
A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 1© Wolfgang Effelsberg,
Ralf Steinmetz

2. Compression Algorithms for Multimedia Data
Streams

2.1 Fundamentals of Data Compression

2.2 Compression of Still Images

2.3 Video Compression

2.4 Audio Compression

2.5 Animations

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 2© Wolfgang Effelsberg,
Ralf Steinmetz

2.1 Fundamentals of Data Compression

Motivation: huge data volumes

Text
1 page with 80 characters/line and 64 lines/page and
1 byte/char results in 80 * 64 * 1 * 8 = 40 kbit/page

Still image
24 bits/pixel, 512 x 512 pixel/image results in 512 x 512 x 24 = 8 Mbit/image

Audio
CD quality, sampling rate 44,1 KHz, 16 bits per sample results in 44,1 x 16 = 706 kbit/s stereo:
1,412 Mbit/s

Video
Full-size frame 1024 x 768 pixel/frame, 24 bits/pixel,
30 frames/s results in 1024 x 768 x 24 x 30 = 566 Mbit/s.
More realistic: 360 x 240 pixel/frame, 360 x 240 x 24 x 30 = 60 Mbit/s

=> Storage and transmission of multimedia streams require compression!

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 3© Wolfgang Effelsberg,
Ralf Steinmetz

Principles of Data Compression

1. Lossless Compression
• The original object can be reconstructed perfectly

• Compression rates of 2:1 to 50:1 are typical

• Example: Huffman coding

2. Lossy Compression
• There is a difference between the original object and the reconstructed object.

• Physiological and psychological properties of the ear and eye can be taken into
account

• Higher compression rates are possible than with lossless compression (typically up
to 100:1)

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 4© Wolfgang Effelsberg,
Ralf Steinmetz

Simple Lossless Algorithms: Pattern Substitution

Example 1: ABC -> 1; EE -> 2

Example 2:

Note that in this example both algorithms lead to the same compression rate.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 5© Wolfgang Effelsberg,
Ralf Steinmetz

Run Length Coding

Principle
Replace all repetitions of the same symbol in the text (”runs“) by a repetition counter
and the symbol.

Example
Text:
AAAABBBAABBBBBCCCCCCCCDABCBAABBBBCCD

Encoding:
4A3B2A5B8C1D1A1B1C1B2A4B2C1D

As we can see, we can only expect a good compression rate when long runs occur
frequently.

Examples are long runs of blanks in text documents, leading zeroes in numbers or
strings of „white“ in gray-scale images.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 6© Wolfgang Effelsberg,
Ralf Steinmetz

Run Length Coding for Binary Files

When dealing with binary files we are sure that a run of “1“s is always followed by a run
of “0“s and vice versa. It is thus sufficient to store the repetition counters only!

Example

000000000000000000000000000011111111111111000000000 28 14 9
000000000000000000000000001111111111111111110000000 26 18 7
000000000000000000000001111111111111111111111110000 23 24 4
000000000000000000000011111111111111111111111111000 22 26 3
000000000000000000001111111111111111111111111111110 20 30 1
000000000000000000011111110000000000000000001111111 19 7 18 7
000000000000000000011111000000000000000000000011111 19 5 22 5
000000000000000000011100000000000000000000000000111 19 3 26 3
000000000000000000011100000000000000000000000000111 19 3 26 3
000000000000000000011100000000000000000000000000111 19 3 26 3
000000000000000000011100000000000000000000000000111 19 3 26 3
000000000000000000001111000000000000000000000001110 20 4 23 3 1
000000000000000000000011100000000000000000000111000 22 3 20 3 3
011 1 50
011 1 50
011 1 50
011 1 50
011 1 50
0110011 1 2 46 2

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 7© Wolfgang Effelsberg,
Ralf Steinmetz

Variable Length Coding

Classical character codes use the same number of bits for each character. When the
frequency of occurrence is different for different characters, we can use fewer bits for
frequent characters and more bits for rare characters.

Example
Code 1: A B C D E ...

1 2 3 4 5 (binary)

Encoding of ABRACADABRA with constant bit length (= 5 Bits):
0000100010100100000100011000010010000001
000101001000001

Code 2: A B R C D
0 1 01 10 11

Encoding: 0 1 01 0 10 0 11 0 1 01 0

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 8© Wolfgang Effelsberg,
Ralf Steinmetz

Delimiters

Code 2 can only be decoded unambiguously when delimiters are stored with the codewords. This
can increase the size of the encoded string considerably.

Idea
No code word should be the prefix of another codeword! We will then no longer need delimiters.

Code 3:

Encoded string: 1100011110101110110001111

A 1 1
B 0 0
R 0 1 1
C 0 1 0
D 1 0

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 9© Wolfgang Effelsberg,
Ralf Steinmetz

Representation as a Trie

An obvious method to represent such a code as a TRIE. In fact, any TRIE with M leaf
nodes can be used to represent a code for a string containing M different characters.

The figure on the next page shows two codes which can be used for
ABRACADABRA. The code for each character is represented by the path from the
root of the TRIE to that character where “0“ goes to the left, “1“ goes to the right, as is
the convention for TRIEs.

The TRIE on the left corresponds to the encoding of ABRACADABRA on the previous
page, the TRIE on the right generates the following encoding:

01101001111011100110100

which is two bits shorter.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 10© Wolfgang Effelsberg,
Ralf Steinmetz

Two Tries for our Example

The TRIE representation guarantees indeed that no codeword is the prefix of
another codeword. Thus the encoded bit string can be uniquely decoded.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 11© Wolfgang Effelsberg,
Ralf Steinmetz

Huffman Code

Now the question arises how we can find the best variable-length code for given
character frequencies (or probabilities). The algorithm that solves this problem was
found by David Huffman in 1952.

Algorithm Generate-Huffman-Code
Determine the frequencies of the characters and mark the leaf nodes of a binary
tree (to be built) with them.

1. Out of the tree nodes not yet marked as DONE, take the two with the smallest
frequencies and compute their sum.

2. Create a parent node for them and mark it with the sum. Mark the branch to the
left son with 0, the one to the right son with 1.

3. Mark the two son nodes as DONE. When there is only one node not yet marked
as DONE, stop (the tree is complete). Otherwise, continue with step 2.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 12© Wolfgang Effelsberg,
Ralf Steinmetz

Huffman Code, Example

Probabilities of the characters:
p(A) = 0.3; p(B) = 0.3; p(C) = 0.1; p(D) = 0.15;
p(E) = 0.15

30%

30%

1
1

100

1
1
25

A

B

C

D

E0 40

0

0

0

60

10%

15%

15%

11

10

011

010

00

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 13© Wolfgang Effelsberg,
Ralf Steinmetz

Huffman Code, why is it optimal?

Characters with higher probabilities are closer to the root of the tree and thus have
shorter codeword lengths; thus it is a good code. It is even the best possible code!

Reason:
The length of an encoded string equals the weighted outer path length of the Huffman
tree.

To compute the “weighted outer path length“ we first compute the product of the
weight (frequency counter) of a leaf node with its distance from the root. We then
compute the sum of all these values over the leaf nodes. This is obviously the same
as summing up the products of each character‘s codeword length with its frequency of
occurrence.

No other tree with the same frequencies attached to the leaf nodes has a smaller
weighted path length than the Huffman tree.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 14© Wolfgang Effelsberg,
Ralf Steinmetz

Sketch of the Proof

With the same building process another tree could be constructed but without always
combining the two nodes with the minimal frequencies. We can show by induction that
no other such strategy will lead to a smaller weighted outer path length than the one
that combines the minimal values in each step.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 15© Wolfgang Effelsberg,
Ralf Steinmetz

Decoding Huffman Codes (1)

An obvious possibility is to use the TRIE:

1. Read the input stream sequentially and traverse the TRIE until a leaf node is
reached.

2. When a leaf node is reached, output the character attached to it.

3. To decode the next bit, start again at the root of the TRIE.

Observation
The input bit rate is constant, the output character rate is variable.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 16© Wolfgang Effelsberg,
Ralf Steinmetz

Decoding Huffman Codes (2)

As an alternative we can use a decoding table.

Creation of the decoding table:
If the longest codeword has L bits, the table has 2L entries.

• Let ci be the codeword for character si. Let ci have li bits. We then create 2L-li

entries in the table. In each of these entries the first li bits are equal to ci, and the
remaining bits take on all possible L-li binary combinations.

• At all these addresses of the table we enter si as the character recognized, and
we remember li as the length of the codeword.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 17© Wolfgang Effelsberg,
Ralf Steinmetz

Decoding with the Table

Algorithm Table-Based Huffman Decoder
1. Read L bits from the input stream into a buffer.

2. Use the buffer as the address into the table and output the recognized
character si.

3. Remove the first li bits from the buffer and pull in the next li bits from the input bit
stream.

4. Continue with step 2.

Observation
• Table-based Huffman decoding is fast.

• The output character rate is constant, the input bit rate is variable.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 18© Wolfgang Effelsberg,
Ralf Steinmetz

Huffman Code, Comments

• A very good code for many practical purposes.
• Can only be used when the frequencies (or probabilities) of the characters are

known in advance.
• Variation: Determine the character frequencies separately for each new document

and store/transmit the code tree/table with the data.
• Note that a loss in “optimality“ comes from the fact that each character must be

encoded with a fixed number of bits, and thus the codeword lengths do not match
the frequencies exactly (consider a code for three characters A, B and C, each
occurring with a frequency of 33 %).

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 19© Wolfgang Effelsberg,
Ralf Steinmetz

Lempel-Ziv Code

Lempel-Ziv codes are an example of the large group of dictionary-based codes.

Dictionary: A table of character strings which is used in the encoding process.

Example
The word “lecture“ is found on page x4, line y4 of the dictionary. It can thus be
encoded as (x4,y4).

A sentence such as „this is a lecture“ could perhaps be encoded as a sequence of
tuples (x1,y1) (x2,y2) (x3,y3) (x4,y4).

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 20© Wolfgang Effelsberg,
Ralf Steinmetz

Dictionary-Based Coding Techniques

Static techniques
The dictionary exists before a string is encoded. It is not changed, neither in the
encoding nor in the decoding process.

Dynamic techniques
The dictionary is created “on the fly“ during the encoding process, at the sending (and
sometimes also at the receiving) side.

Lempel and Ziv have proposed an especially brilliant dynamic, dictionary-based
technique (1977). Variants of this techniques are used very widely today for lossless
compression. An example is LZW (Lempel/Ziv/Welch) which is invoked with the Unix
compress command.

The well-known TIFF format (Tag Image File Format) is also based on Lempel-Ziv
coding.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 21© Wolfgang Effelsberg,
Ralf Steinmetz

Ziv-Lempel Coding, the Principle

Idea (pretty bright!)
The current piece of the message can be encoded as a reference to an earlier
(identical) piece of the message. This reference will usually be shorter than the piece
itself. As the message is processed, the dictionary is created dynamically.

LZW Algorithm
InitializeStringTable();
WriteCode(ClearCode);
ω = the empty string;
for each character in string {

K = GetNextCharacter();
if ω + K is in the string table {

ω=ω+K /* String concatenation*/
} else {
WriteCode(CodeFromString(ω));
AddTableEntry(ω+K);
ω=K

}
}
WriteCode(CodeFromString(ω));

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 22© Wolfgang Effelsberg,
Ralf Steinmetz

LZW, Example 1, Encoding

Alphabet: X = {A, B, C}
Message: ABABCBABAB

Encoded message: 1 2 4 3 5 8

C3
B2
A1

0
EntryIndex

DICTIONARY

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 23© Wolfgang Effelsberg,
Ralf Steinmetz

LZW Algorithm: Decoding (1)

Note that the decoding algorithm also creates the dictionary dynamically, the
dictionary is not transmitted!
While((Code=GetNextCode() != EofCode){

if (Code == ClearCode)
{
InitializeTable();
Code = GetNextCode();
if (Code==EofCode)
break;

WriteString(StringFromCode(Code));
OldCode = Code;

} /* end of ClearCode case */
else
{
if (IsInTable(Code))
{

WriteString(StringFromCode(Code));
AddStringToTable(StringFromCode(OldCode)+
FirstChar(StringFromCode(Code)));

OldCode = Code;
}

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 24© Wolfgang Effelsberg,
Ralf Steinmetz

LZW Algorithm: Decoding (2)

else
{/* codes in not in table */

OutString = StringFromCode(OldCode) +
FirstChar(StringFromCode(OldCode)));

WriteString(OutString);
AddStringToTable(OutString);
OldCode = Code;

}
}

}

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 25© Wolfgang Effelsberg,
Ralf Steinmetz

LZW, Example 2, Encoding (1)

Our alphabet is {A,B,C,D}. We encode the string ABACABA. In the first step we
initialize the code table:

1 = A
2 = B
3 = C
4 = D

We read A from the input. We find A in the table and keep A in the buffer. We read B
from the input into the buffer and now consider AB. AB is not in the table, we add AB
with index 5, write 1 for A into the output and remove A from the buffer. The buffer
only contains B now. Next, we read A, consider BA, add BA as entry 6 into the table
and write 2 for B into the output, etc.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 26© Wolfgang Effelsberg,
Ralf Steinmetz

LZW, Example 2, Encoding (2)

At the end the code table is
1 = A
2 = B
3 = C
4 = D
5 = AB
6 = BA
7 = AC
8 = CA
9 = ABA.

The output data stream is 1 2 1 3 5 1.

Note that only the initial table is transmitted! The decoder can construct the rest of the
table dynamically. In practical applications the size of the code table is limited. The
actual size chosen is a trade-off between coding speed and compression rate.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 27© Wolfgang Effelsberg,
Ralf Steinmetz

LZW, Properties

• The dictionary is created dynamically during the encoding and decoding process. It
is neither stored nor transmitted.

• The dictionary adapts dynamically to the properties of the character string.
• With length N of the original message, the encoding process is of complexity O(N).

With length M of the encoded message, the decoding process is of complexity
O(M). These are thus very efficient processes. Since several characters of the
input alphabet are combined into one character of the code, M <= N.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 28© Wolfgang Effelsberg,
Ralf Steinmetz

Typical Compression Rates

Typical examples of file sizes in % of the original size

30 %50 %text

55 %80 %machine code

45 %65 %C source code

Encoded with
Lempel-Ziv

Encoded with
Huffman

Type of file

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 29© Wolfgang Effelsberg,
Ralf Steinmetz

Arithmetic Coding

From an information theory point of view, the Huffman code is not quite optimal since
a codeword must always consist of an integer number of bits even if this does not
correspond exactly to the frequency of occurrence of the character. Arithmetic
coding solves this problem.

Idea
An entire message is represented by a floating point number out of the interval [0,1).
For this purpose the interval [0,1) is repeatedly subdivided according to the frequency
of the next symbol. Each new sub-interval represents one symbol. When the process
is completed the shortest floating point number contained in the target interval is
chosen as the representative for the message.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 30© Wolfgang Effelsberg,
Ralf Steinmetz

Arithmetic Coding, the Algorithm

Algorithm Arithmetic Encoding
Begin in front of the first character of the input stream, with the current interval
set to [0,1).

1. Read the next character from the input stream. Subdivide the current interval
according to the frequencies of all characters of the alphabet. Select the
subinterval corresponding to the current character as the next current interval.

2. If you reach the end of the input stream or the end symbol, go to step 4.
Otherwise go to step 2.

3. From the current (final) interval, select the floating point number that you can
represent in the computer with the smallest number of bits. This number is the
encoding of the string.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 31© Wolfgang Effelsberg,
Ralf Steinmetz

Arithmetic Coding, the Decoding Algorithm

Algorithm Arithmetic Decoding

1. Subdivide the interval [0,1) according to the character frequencies, as described
in the encoding algorithm, up to the maximum size of a message.

2. The encoded floating point number uniquely identifies one particular subinterval.

3. This subinterval uniquely identifies one particular message. Output the message.

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 32© Wolfgang Effelsberg,
Ralf Steinmetz

Arithmetic Coding, Example

Alphabet = {A,B,C}
Frequencies (probabilities):

p(A) = 0.2;
p(B) = 0.3;
p(C) = 0.5

Messages: ACB AAB (maximum size of a messe is 3).

Encoding of the first block ACB:

Final interval: [0.12; 0.15) choose e.g. 0.12

0 0,2 0,5 1
A B C

0 0,04 0,1 0,2
A B C

0,1 0,12 0,15 0,2
A B C

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 33© Wolfgang Effelsberg,
Ralf Steinmetz

Arithmetic Coding, Properties

• The encoding depends on the probabilities (frequencies) of the characters. The
higher the frequency, the larger the subinterval; the smaller the number of bits
needed to represent it.

• The code length reaches the theoretical optimum: The number of bits used for each
character need not be an integer. It can approach the real probability better than
with the Huffman code.

• There are several possibilities to terminate the encoding process:
• The length of each block is known to sender and receiver.
• There is a fixed number of bits of the mantissa (known to sender and

receiver).

A Graduate Course on Multimedia
Technology

2. Compression 2.1 - 34© Wolfgang Effelsberg,
Ralf Steinmetz

Arithmetic Coding, Problems

• The precision of floating point numbers is machine-dependent. Overflow and
underflow can happen.

• The algorithm only makes sense of the machine can internally represent floating
point numbers with variable length.

• Decoding can only begin after the full number has been received. The number can
have many bits in the mantissa.

• One bit error destroys the entire message.

