
A Metascheduler For The Grid

Sathish S. Vadhiyar and Jack J. Dongarra

Computer Science Department
University of Tennessee, Knoxville
{vss, dongarra}@cs.utk.edu

Abstract. With the advent of Grid Computing, scheduling strategies
for distributed heterogeneous systems have either become irrelevant or
have to be extended significantly to support Grid dynamics. In this pa-
per, we describe a metascheduling architecture for a Grid system that
takes into account both the application and system level considerations.
Results are presented to prove the efficiency of the metascheduler.

1 Introduction

There have been number of efforts in devising and/or implementing scheduling
strategies for heterogeneous distributed computing systems since the advent of
Network of Workstations (NOWs) [1], [2], [3], [4], [5], [6], [7]. The Grid [8]
is an abstraction of distributed heterogeneous systems and investigating the
relevance of scheduling strategies for heterogeneous systems to Grid environment
is a worthwhile effort. The work by Khaled Al-Saqabi et. al [2] considers a 2D
array of processors and time slices and assigns the Virtual Processes (VPs) of
the jobs to the array. Scheduling based on time slices will lead to huge overhead
for the scheduling system when the scheduling strategies have to be invoked
frequently in response to frequent Grid dynamics. The Load Sharing Facility [3]
lays emphasis on distributing the jobs among the available machines based on
the workload on the machines. The assumption that load sharing leads to good
response times is not valid in a Grid scenario where the network heterogeneity
can significantly affect the execution time of the application.

MARS [4] and more recently AppLeS [7] provide good approaches for applica-
tion level scheduling in meta computing environments. AppLeS is more suitable
for Grid environment with its sophisticated NWS [9] mechanism for collecting
system information. However, both MARS and AppLeS do not have powerful
resource managers that can negotiate with applications to balance the interests
of different applications. The absence of these negotiating mechanisms in a Grid
can lead to various problems like the bushel of AppLeS problem [7].

In this paper, we describe a metascheduling architecture that we have been
building in the context of the GrADS project [10]. The metascheduler receives
candidate schedules of different application level schedulers and implements
scheduling policies for balancing the interests of different applications. The goals
of the metascheduler include



1. Verifying that the applications made their scheduling decisions based on
conditions of the system when competing applications are executing.

2. Accommodating short running jobs by temporarily stopping long running
and resource consuming jobs.

3. Facilitating new applications to execute faster by stopping certain competing
applications.

4. Minimizing the impact that new applications can create on already running
applications.

5. Migrating running applications to new machines in response to system load
changes to improve the performance or to prevent performance degradation.

In Section 2, we give a brief overview of the existing GrADS project that
utilizes application level scheduling. In Section 3, we describe the metascheduler
that we have been building for GrADS environment. We explain in detail the dif-
ferent components of the metascheduler and the mechanisms in the components
to achieve the goals mentioned above. In Section 4, we present experiments and
results to validate the usefulness of the metascheduler. In Section 5, we compare
our metascheduler with related efforts. In Section 6, we present some conclusions.
In Section 7, we mention some of the future plans for our metascheduler.

2 The GrADS system

GrADS [10] is an ongoing research involving number of institutions and its goal is
to simplify distributed heterogeneous computing in the same way that the World
Wide Web simplified information sharing over the Internet. The University of
Tennessee investigates issues regarding integration of numerical libraries in the
GrADS system. In our previous work [11], we demonstrated the ease in which
numerical libraries like ScaLAPACK can be integrated into the Grid system and
the ease in which the libraries can be used over the Grid. We also showed some
results to prove the usefulness of a Grid in solving large numerical problems.
The architecture that was used in the work is illustrated by Fig. 1.

As a first step, the user invokes a Grid routine with the problem he wants to
solve along with the problem parameters. The Grid routine invokes a component
called Resource Selector. The Resource Selector accesses the Globus MetaDirec-
tory Service(MDS) to get a list of machines that are alive and then contacts the
Network Weather Service(NWS) to get system information for the machines. The
Grid routine then invokes a component called Performance Modeler with prob-
lem parameters, machines and machine information. The Performance Modeler
through an execution model built specifically for the application, determines the
final list of machines for application execution. By employing the application
specific execution model, GrADS follows the AppLeS approach to scheduling.
The problem parameters and the final list of machines are passed as a contract
to a component called Contract Developer. The Contract Developer is primitive
in that it approves all the contracts that are passed to it. The Grid routine then
passes the problem, its parameters and the final list of machines to Applica-
tion Launcher. The Application Launcher spawns the job on the given machines



Fig. 1. GrADS Architecture for Numerical Libraries

User Grid Routine Resource
Selector

MDS

NWS

Performance
Modeler

Contract
Developer

Application
Launcher

Contract
Monitor

Application

using Globus job management mechanism and also spawns a component called
Contract Monitor. The Contract Monitor through an Autopilot mechanism [12]
monitors the times taken for different parts of applications and displays the
actual and predicted times. Eventually the Contract Monitor will be used for
sending information about contract violations to a rescheduler which can in turn
take corrective measures on the application execution.

3 Metascheduling in the GrADS architecture

There are a number of potential problems for scheduling with the architecture
shown in Fig. 1. First, when two applications are submitted to the Grid at the
same time, scheduling decisions will be made for each application assuming the
absence of the other application. Second, in the above architecture, if, through
the performance model, a new job submitted to the Grid system detects that
the Grid resources are not sufficient for it to execute, it cannot make further
progress. Similarly, a long running job that was submitted to the system can
severely impact the performance of new jobs that enter the system. The root
cause of the above and other problems is the absence of a metascheduler that
obtains the candidate schedules from different applications and try to balance
the needs of different applications. The metascheduler is implemented by the
addition of four new components, namely, database manager, permission service,
contract negotiator and expander, to the above architecture as illustrated by Fig.
2

The following subsections describe each of these components.

3.1 Database Manager

The database manager maintains a record for each application submitted to
the Grid system. The record contains the state of the application, the resource



Fig. 2. Modified GrADS Architecture

User Grid Routine

Resource
Selector

MDS

NWS

Modeler

Permission
Service

PerformanceContract
Developer

Application
Launcher

Contract
Monitor

Application

Contract
Negotiator

Database
Manager

Expander

information of the Grid resources when the application entered the system, the
final list of machines on which the application executes, the predicted time for
the application etc. These information are queried by the different components
of the metascheduler to make scheduling decisions.

3.2 Permission Service

Permission Service is a daemon that receives requests from the applications
to grant them permission to proceed with the usage of the Grid system. The
Permission service checks if the Grid resources have adequate capacity to execute
the application. If the capacity of the Grid resources is less than the capacity
required by the application, the Permission Service either denies permission for
the request or tries to accommodate the application by stopping an already
executing resource and time consuming application.

3.3 Contract Negotiator

An application contract consists of it problem parameters and the final list of
machines on which it will execute. In the GrADS architecture shown in Fig 2,
the contract developer, instead of approving the contracts of the applications
under all conditions, contacts the Contract Negotiator for obtaining approval
of the application contract. The Contract Negotiator acts as a queue manager
controlling different applications of the Grid system. The Contract Negotiator
either approves the contract in which case the application can proceed to the



application launching phase, or rejects the contract in which the case the ap-
plication restarts from the resource selection phase. The Contract Negotiator
rejects the contract under the following conditions:

1. When the application has got its resource information from NWS before an
executing application started executing.

2. If the performance of the new application can be improved significantly in
the absence of an executing application and the contract monitor either waits
for the executing application to complete or pro actively stops the executing
application to accommodate the new application.

3. If the already executing applications can be severely impacted by the new
application.

1 and 2 have already been implemented while 3 is a work in progress.

3.4 Expander

Expander is a daemon that queries the database manager at regular intervals
for completed applications. When an application completes, the expander deter-
mines if performance benefits can be obtained for an already executing applica-
tion by expanding the application to utilize the resources freed by the completed
application. If the expander detects such an executing application, it stops the
application and continues the application on the new set of resources.

4 Experiments and Results

ScaLAPACK LU factorization code was instrumented such that the time taken
for each iteration corresponding to a block of the matrix is measured and mon-
itored. Mechanisms have been implemented in the ScaLAPACK code that will
enable the ScaLAPACK application to be stopped and restarted on possibly dif-
ferent number of processors. We use the Internet Backplane Protocol (IBP) [13]
for storage of the checkpoint states. IBP depots, where storage can be allocated,
are started on the processors of the Grid System.

The GrADS experimental testbed consists of about 40 machines that reside
in institutions across the country including University of Tennessee, University
of Illinois, University of California at San Diego, Rice University etc. For the easy
demonstration of our experimental results, our experimental testbed consists of
4 machines in UIUC called opus, 1 machine from University of Tennessee called
torc and 2 machines from University of Tennessee called cypher. Machines from
different domains are connected to each other by Internet. Table 1 gives the
specification of the machines.

The total execution times reported in the following subsections include the
time for Grid overhead and not just the time taken by the actual application.
The time for the Grid overhead is reported in our previous work [11].



Table 1. Machine specifications

Machine
name

Processor
type

speed (MHz) Memory
(MByte)

Network

torc Pentium III 550 512 blabla

cypher Pentium III 500 512 blabla

opus Pentium II 450 256 1 Gbit
switched
Ethernet

4.1 Experiment 1

In this experiment, we demonstrate the functionality of the Permission Service.
A large application, app1, was introduced into the system consisting of the 7
machines mentioned above. Ten minutes after app1 started, a relatively small
application, app2, that intended to use only the 4 opus machines was introduced
into the system. app2 was chosen such that its memory requirements were greater
than the memory available in the opus system when app1 was executing. In the
following experiment, a problem with matrix size 13000 was chosen for app1.
The Permission Service evaluated the performance benefits of stopping app1,
accommodating app2, and restarting app1 after the completion of app2. The
functionality of the Permission Service, when the matrix size of app2 is 5000, is
illustrated on a single opus machine in Fig 3. The graph was generated in the
NWS web site.

In Fig 4, we observe the percentage performance loss incurred by app1 due
to the accommodation of app2 in the system. The x-axis represents different
matrix sizes for app2 and the y-axis represents the percentage performance loss
incurred by app1. Two points can be observed from Fig 4. First, for less than 20%
of performance loss for app1, the system was able to accommodate app2. Without
the Permission Service mechanism, app2 would not have been able to use the
system. Second, the performance loss increases with the increase in problem size
of app2. When the problem size of app2 is comparable with the problem size
of app1, the Permission Service determines that performance benefits cannot be
achieved for the system by accommodating app1. In order to prevent continuous
preemption of app1 by small applications, the scheduling strategy is implemented
such that app1 is ensured to make at least 20% of progress between preemptions.

4.2 Experiment 2

In this experiment, we demonstrate the utility of the contract negotiator in ac-
commodating a new application by stopping an already running application, if
significant performance benefits can be obtained for the new application. The
stopped application is restarted after the new application completes its execu-
tion. For this experiment, only cypher machines were used. In this experiment,
an application, app1 is executed on N processors. 3 minutes after app1 started its
execution, an application, app2 is introduced in the Grid system. app2 is intended



Fig. 3. Free memory available on a opus machine during the execution of app1 and
app2

No processes running on
the system

13000 problem uses
the system

13000 problem
is stopped

5000 problem uses the system

5000 problem completes

13000 problem continues

13000 problem completes

Fig. 4. Performance loss for app1

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

4500 5000 5500 6000 6500 7000 7500 8000

%
 P

er
fo

rm
an

ce
 L

os
s

Matrix Size

Permission Service Utility



to use (N+1) processors. Since N of the processors were occupied by app1, only
a single processor is available for app2. The Contract Negotiator analyzes the
performance benefits that can be obtained by stopping app1 and making (N+1)
processors available for app2. In the experiments, matrix size 7500 was used for
app2. The total execution time of a 7500 matrix size ScaLAPACK problem when
executed on a single processor is 818.11 seconds.

We define

1. Execution time of app1 without rescheduling, exec1without re

2. Execution time of app1 with rescheduling, exec1with re

3. Execution time of app2 without rescheduling, exec2without re

4. Execution time of app2 with rescheduling, exec2with re

5. Performance loss for app1, perf loss

perf loss =
exec1with re − exec1without re

exec1without re

6. Performance gain for app2, perf gain

perf gain =
exec2without re − exec2with re

exec2without re

7. Utility value, use val

util val =
perf gain

perf loss

util val is > 1 indicates that the rescheduling strategy is useful for the entire
system. util val < 1 indicates that the rescheduling strategy can cause an overall
loss in performance for the entire system. Greater the value of util val, more the
usefulness of the rescheduling strategy.

Table 2 shows the matrix sizes of app1, the number of processors N, the
number of processors eventually used by app2 and the util val. Note that the
eventual number of processors used by app2 depends on system conditions and
execution time model and is not always the (N+1) processors available to app2.

We observe from Table 2, that the values of util val are consistently high for
the above experiments. This proves that the scheduling strategy of compromising
long running jobs for short running jobs is beneficial to the entire system. The
value of util val depends on a number of factors including the times for the long
and short jobs and the times for checkpointing the states of the long job. As in
the Permission Service, mechanisms have been implemented to avoid continuous
preemptions of app2.

4.3 Experiment 3

In this set of experiments, we illustrate the utility of Expander. An application,
app1, was introduced into the system consisting of 4 torc machines. Few minutes
after app1 started, an equally sized application, app2, that intended to use 8



Table 2. Utility of Contract Negotiator

Matrix Size of
app1

Processors N Number of Pro-
cessors used by
app2

util val

15000 4 5 2.13

17000 5 6 5.11

18500 6 7 2.27

20000 7 8 2.04

21000 8 9 2.05

22500 9 9 2.36

24000 10 9 1.72

machines, 4 torcs and 4 cyphers was introduced into the system. Since the 4
torc machines were occupied by app1, app2 was able to utilize only the 4 cypher
machines. When app1 completed, the 4 torc machines were freed and app2 was
able to utilize the extra resources to reduce its remaining execution time. The
Expander evaluated the performance benefits of allowing app2 to utilize the extra
4 processors.

The experiments for this subsection is in progress and initial results are
encouraging.

5 Related Work

There are number of ongoing research efforts in Grid Computing [14], [15], [16],
[17], [18], [19]. Although the task allocation policies employed by Condor [16]
meet the objectives of our metascheduler, task reallocation takes place when the
workstation owner wants to reclaim his resources and not to improve individual
application’s performance. The objectives of Nimrod-G’s [18] scheduling policies
are similar to those of our metascheduler where different users’ requirements
are balanced. Nimrod-G uses grid economies to implement its scheduling poli-
cies while our metascheduler uses predicted application time for our scheduling
policies. Though the Ninf [19] team had evaluated their scheduler when multi-
ple clients run their jobs, no substantial mechanism has been implemented to
guarantee performance for each client.

6 Conclusion

In this paper we have explained the implementation of a metascheduler for the
Grid that takes into account both the application level and system level consider-
ations. We have explained in detail, the different components of our metasched-
uler, viz., the Permission Service, Contract Negotiator and the expander. These
components provide valuable scheduling services that play important roles in
providing scalability of the Grid system. We have demonstrated the utility of
these scheduling decisions with encouraging results.



7 Future Work

Our immediate plans are to demonstrate the usefulness of our metascheduler
in a large Grid system when large number of applications execute on the sys-
tem. Capabilities like evaluating the impact of new applications on existing ap-
plications and migration under performance degradation will be added to the
metascheduler. After the complete implementation of the metascheduler, the
issue of reproducibility of numerical results in the Grid will be investigated.

References

1. T.L. Casavant and J.G. Kuhl, A Taxonomy of Scheduling in General-Purpose
Distributed Computing Systems, IEEE Transactions on Software Engineering, Vol.
SE-14, No. 2, February 1988, pp. 141-154.

2. K.A. Saqabi, S.W. Otto and J. Walpole, Gang Scheduling in Heterogeneous Dis-
tributed Systems, Technical Report, OGI, 1994.

3. S. Zhou, X. Zheng, J. Wang, and P. Delisle, Utopia: a Load Sharing Facility for
Large, Heterogeneous Distributed Computer Systems, Software – Practice and Ex-
perience, 23(12):1305-1336, December 1993.

4. J. Gehring, A. Reinefeld, MARS - A Framework for Minimizing the Job Execution
Time in a Metacomputing Environment, Future Generation Computer Systems,
FGCS-12,1 (1996), Elsevier, pp. 87-99.

5. C.A. Waldspurger and W.E. Weihl. Lottery Scheduling: Flexible Proportional-
Share Resource Management, In First Symposium on Operating Systems Design
and Implementation (OSDI), pages 1-11. USENIX Association, 1995.

6. J. Weissman, The Interference Paradigm for Network Job Scheduling, Proceedings
of the Heterogeneous Computing Workshop, pp. 38-45, April 1996.

7. F. Berman and R. Wolski, The AppLeS Project: A Status Report, Proceedings of
the 8th NEC Research Symposium, Berlin, Germany, May 1997.

8. I. Foster and C. Kesselman, eds., The Grid: Blueprint for a New Computing In-
frastructure, (San Francisco: Morgan Kaufmann, 1999), ISBN 1-55860-475-8

9. R. Wolski, N. Spring, and J. Hayes, The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing, Journal of Future
Generation Computing Systems, Volume 15, Numbers 5-6, pp. 757-768, October,
1999.

10. F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johns-
son, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and
R. Wolski, The GrADS Project: Software Support for High-Level Grid Applica-
tion Development, International Journal of High Performance Applications and
Supercomputing, Vol. 15, number 4 (Winter 2001): 327-344.

11. A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, S. Vadhiyar,
Numerical Libraries and The Grid: The Grads Experiments with ScaLAPACK,
Journal of High Performance Applications and Supercomputing, Vol. 15, number
4 (Winter 2001): 359-374.

12. R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed, Autopilot: Adaptive Control
of Distributed Applications, Proceedings of the 7th IEEE Symposium on High-
Performance Distributed Computing, Chicago, IL, July 1998.



13. J. S. Plank, M. Beck, W. R. Elwasif, T. Moore, M. Swany, R. Wolski, The Internet
Backplane Protocol: Storage in the Network, NetStore99: The Network Storage
Symposium, (Seattle, WA, 1999).

14. I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, Intl J.
Supercomputer Applications, 11(2):115-128, 1997.

15. A. Grimshaw, W. Wulf, J. French, A. Weaver and P. Reynolds, Jr., Legion: The
Next Logical Step Toward a Nationwide Virtual Computer, Tech. Rep. CS-94-21,
Department of Computer Science, University of Virginia, 1994.

16. M. Litzkow, M. Livney and M. Mutka, Condor - a Hunter for Idle Workstations,
in Proc. 8th Intl. Conf. on Distributed Computing Systems, 1988, pp. 104-111.

17. H. Casanova and J. Dongarra, NetSolve: A Network Server for Solving Computa-
tional Science Problems, The International Journal of Supercomputer Applications
and High Performance Computing, Volume 11, Number 3, pp 212-223, Fall 1997.

18. R. Buyya, D. Abramson, and J. Giddy, Nimrod-G Resource Broker for Service-
Oriented Grid Computing, IEEE Distributed Systems Online, in Volume 2 Number
7, November 2001.

19. S. Sekiguchi, M. Sato, H. Nakada and U. Nagashima, Ninf: Network base infor-
mation library for globally high performance computing. Parallel Object-Oriented
Methods and Applications (POOMA), February 1996.


