
The rsync algorithm

Andrew Tridgell Paul Mackerras
Department of Computer Science

Australian National University
Canberra, ACT 0200, Australia

January 17, 2003

Abstract

This report presents an algorithm for updating a file on one machine
to be identical to a file on another machine. We assume that the two
machines are connected by a low-bandwidth high-latency bi-directional
communications link. The algorithm identifies parts of the source file
which are identical to some part of the destination file, and only sends
those parts which cannot be matched in this way. Effectively, the algo-
rithm computes a set of differences without having both files on the same
machine. The algorithm works best when the files are similar, but will
also function correctly and reasonably efficiently when the files are quite
different.

1 The problem

Imagine you have two files, A and B, and you wish to update B to be the same
as A. The obvious method is to copy A onto B.

Now imagine that the two files are on machines connected by a slow com-
munications link, for example a dialup IP link. If A is large, copying A onto
B will be slow. To make it faster you could compress A before sending it, but
that will usually only gain a factor of 2 to 4.

Now assume that A and B are quite similar, perhaps both derived from the
same original file. To really speed things up you would need to take advantage
of this similarity. A common method is to send just the differences between A
and B down the link and then use this list of differences to reconstruct the file.

The problem is that the normal methods for creating a set of differences
between two files rely on being able to read both files. Thus they require that
both files are available beforehand at one end of the link. If they are not both
available on the same machine, these algorithms cannot be used (once you had
copied the file over, you wouldn’t need the differences). This is the problem
that rsync addresses.

The rsync algorithm efficiently computes which parts of a source file match
some part of an existing destination file. These parts need not be sent across
the link; all that is needed is a reference to the part of the destination file.
Only parts of the source file which are not matched in this way need to be sent
verbatim. The receiver can then construct a copy of the source file using the
references to parts of the existing destination file and the verbatim material.

1



Trivially, the data sent to the receiver can be compressed using any of a
range of common compression algorithms, for further speed improvements.

2 The rsync algorithm

Suppose we have two general purpose computers α and β. Computer α has
access to a file A and β has access to file B, where A and B are “similar”.
There is a slow communications link between α and β.

The rsync algorithm consists of the following steps:

1. β splits the file B into a series of non-overlapping fixed-sized blocks of size
S bytes1. The last block may be shorter than S bytes.

2. For each of these blocks β calculates two checksums: a weak “rolling”
32-bit checksum (described below) and a strong 128-bit MD4 checksum.

3. β sends these checksums to α.

4. α searches through A to find all blocks of length S bytes (at any offset,
not just multiples of S) that have the same weak and strong checksum
as one of the blocks of B. This can be done in a single pass very quickly
using a special property of the rolling checksum described below.

5. α sends β a sequence of instructions for constructing a copy of A. Each
instruction is either a reference to a block of B, or literal data. Literal
data is sent only for those sections of A which did not match any of the
blocks of B.

The end result is that β gets a copy of A, but only the pieces of A that are
not found in B (plus a small amount of data for checksums and block indexes)
are sent over the link. The algorithm also only requires one round trip, which
minimises the impact of the link latency.

The most important details of the algorithm are the rolling checksum and
the associated multi-alternate search mechanism which allows the all-offsets
checksum search to proceed very quickly. These will be discussed in greater
detail below.

3 Rolling checksum

The weak rolling checksum used in the rsync algorithm needs to have the prop-
erty that it is very cheap to calculate the checksum of a buffer X2..Xn+1 given
the checksum of buffer X1..Xn and the values of the bytes X1 and Xn+1.

The weak checksum algorithm we used in our implementation was inspired
by Mark Adler’s adler-32 checksum. Our checksum is defined by

a(k, l) = (
l∑

i=k

Xi) mod M

1We have found that values of S between 500 and 1000 are quite good for most purposes

2



b(k, l) = (
l∑

i=k

(l − i+ 1)Xi) mod M

s(k, l) = a(k, l) + 216b(k, l)

where s(k, l) is the rolling checksum of the bytes Xk . . . Xl. For simplicity
and speed, we use M = 216.

The important property of this checksum is that successive values can be
computed very efficiently using the recurrence relations

a(k + 1, l + 1) = (a(k, l)−Xk +Xl+1) mod M

b(k + 1, l + 1) = (b(k, l)− (l − k + 1)Xk + a(k + 1, l + 1)) mod M

Thus the checksum can be calculated for blocks of length S at all possible
offsets within a file in a “rolling” fashion, with very little computation at each
point.

Despite its simplicity, this checksum was found to be quite adequate as a
first-level check for a match of two file blocks. We have found in practice that
the probability of this checksum matching when the blocks are not equal is quite
low. This is important because the much more expensive strong checksum must
be calculated for each block where the weak checksum matches.

4 Checksum searching

Once α has received the list of checksums of the blocks of B, it must search A
for any blocks at any offset that match the checksum of some block of B. The
basic strategy is to compute the 32-bit rolling checksum for a block of length S
starting at each byte of A in turn, and for each checksum, search the list for a
match. To do this our implementation uses a simple 3 level searching scheme.

The first level uses a 16-bit hash of the 32-bit rolling checksum and a 216

entry hash table. The list of checksum values (i.e., the checksums from the blocks
of B) is sorted according to the 16-bit hash of the 32-bit rolling checksum. Each
entry in the hash table points to the first element of the list for that hash value,
or contains a null value if no element of the list has that hash value.

At each offset in the file the 32-bit rolling checksum and its 16-bit hash are
calculated. If the hash table entry for that hash value is not a null value, the
second-level check is invoked.

The second-level check involves scanning the sorted checksum list starting
with the entry pointed to by the hash table entry, looking for an entry whose
32-bit rolling checksum matches the current value. The scan terminates when
it reaches an entry whose 16-bit hash differs. If this search finds a match, the
third-level check is invoked.

The third-level check involves calculating the strong checksum for the current
offset in the file and comparing it with the strong checksum value in the current
list entry. If the two strong checksums match, we assume that we have found
a block of A which matches a block of B. In fact the blocks could be different,
but the probability of this is microscopic, and in practice this is a reasonable
assumption.

When a match is found, α sends β the data in A between the current file
offset and the end of the previous match, followed by the index of the block in

3



B that matched. This data is sent immediately a match is found, which allows
us to overlap the communication with further computation.

If no match is found at a given offset in the file, the rolling checksum is
updated to the next offset and the search proceeds. If a match is found, the
search is restarted at the end of the matched block. This strategy saves a
considerable amount of computation for the common case where the two files
are nearly identical. In addition, it would be a simple matter to encode the
block indexes as runs, for the common case where a portion of A matches a
series of blocks of B in order.

5 Pipelining

The above sections describe the process for constructing a copy of one file on
a remote system. If we have a several files to copy, we can gain a considerable
latency advantage by pipelining the process.

This involves β initiating two independent processes. One of the processes
generates and sends the checksums to α while the other receives the difference
information from α and reconstructs the files.

If the communications link is buffered then these two processes can proceed
independently and the link should be kept fully utilised in both directions for
most of the time.

6 Results

To test the algorithm, tar files were created of the Linux kernel sources for two
versions of the kernel. The two kernel versions were 1.99.10 and 2.0.0. These
tar files are approximately 24MB in size and are separated by 5 released patch
levels.

Out of the 2441 files in the 1.99.10 release, 291 files had changed in the 2.0.0
release, 19 files had been removed and 25 files had been added.

A “diff” of the two tar files using the standard GNU diff utility produced
over 32 thousand lines of output totalling 2.1 MB.

The following table shows the results for rsync between the two files with a
varying block size.2

block matches tag false data written read
size hits alarms
300 64247 3817434 948 5312200 5629158 1632284
500 46989 620013 64 1091900 1283906 979384
700 33255 571970 22 1307800 1444346 699564
900 25686 525058 24 1469500 1575438 544124
1100 20848 496844 21 1654500 1740838 445204

In each case, the CPU time taken was less than the time it takes to run
“diff” on the two files.3

2All the tests in this section were carried out using rsync version 0.5
3The wall clock time was approximately 2 minutes per run on a 50 MHz SPARC 10 running

SunOS, using rsh over loopback for communication. GNU diff took about 4 minutes.

4



The columns in the table are as follows:

block size The size in bytes of the checksummed blocks.

matches The number of times a block of B was found in A.

tag hits The number of times the 16-bit hash of the rolling checksum matched
a hash of one of the checksums from B.

false alarms The number of times the 32-bit rolling checksum matched but
the strong checksum didn’t.

data The amount of file data transferred verbatim, in bytes.

written The total number of bytes written by α, including protocol overheads.
This is almost all file data.

read The total number of bytes read by α, including protocol overheads. This
is almost all checksum information.

The results demonstrate that for block sizes above 300 bytes, only a small
fraction (around 5%) of the file was transferred. The amount transferred was
also considerably less than the size of the diff file that would have been trans-
ferred if the diff/patch method of updating a remote file was used.

The checksums themselves took up a considerable amount of space, although
much less than the size of the data transferred in each case. Each pair of
checksums consumes 20 bytes: 4 bytes for the rolling checksum plus 16 bytes
for the 128-bit MD4 checksum.

The number of false alarms was less than 1/1000 of the number of true
matches, indicating that the 32-bit rolling checksum is quite good at screening
out false matches.

The number of tag hits indicates that the second level of the checksum
search algorithm was invoked about once every 50 characters. This is quite high
because the total number of blocks in the file is a large fraction of the size of the
tag hash table. For smaller files we would expect the tag hit rate to be much
closer to the number of matches. For extremely large files, we should probably
increase the size of the hash table.

The next table shows similar results for a much smaller set of files. In this
case the files were not packed into a tar file first. Rather, rsync was invoked
with an option to recursively descend the directory tree. The files used were
from two source releases of another software package called Samba. The total
source code size is 1.7 MB and the diff between the two releases is 4155 lines
long totalling 120 kB.

block matches tag false data written read
size hits alarms
300 3727 3899 0 129775 153999 83948
500 2158 2325 0 171574 189330 50908
700 1517 1649 0 195024 210144 36828
900 1156 1281 0 222847 236471 29048
1100 921 1049 0 250073 262725 23988

5



7 Availability

An implementation of rsync which provides a convenient interface similar to the
common UNIX command rcp has been written and is available for download
from http://rsync.samba.org/

6


