
Users Manual

RoboCup Soccer Server

for Soccer Server Version 7.07 and later

Mao Cheny, Ehsan Foroughi,

Fredrik Heintz, ZhanXiang Huangy,

Spiros Kapetanakis, Kostas Kostiadis,

Johan Kummeneje, Itsuki Noda,

Oliver Obst, Pat Riley,

Timo Ste�ens, Yi Wangy and

Xiang Yiny

June 11, 2001

y
<ustc9811@sina.com>

<foroughi@ce.sharif.edu>

<frehe@ida.liu.se>

<spiros@cs.york.ac.uk>

<kkosti@essex.ac.uk>

<johan.kummeneje@generalwireless.se>

<noda@etl.go.jp>

<fruit@uni-koblenz.de>

<pfr+@cs.cmu.edu>

<timosteffens@gmx.de>

Copyright © 2001 The RoboCup Federation. Permission is granted to copy, distribute

and/or modify this document under the terms of the GNU Free Documentation License,

Version 1.1 or any later version published by the Free Software Foundation; with no

Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy

of the license is included in the section entitled \GNU Free Documentation License".

Acknowledgements

We are very grateful for the work of the authors from the previous versions of the manual

that could not help out on this version:

� David Andre at Berkeley, University of California, USA.

� Pascal Gugenberger at Humboldt University, Berlin, Germany.

� Marius Joldos at Technical University of Cluj-Napoca, Romania.

� Paul Arthur Navratil at University of Texas, USA.

� Peter Stone at AT&T, USA.

� Tomoichi Takahashi at Chubu University, Japan.

� Tralvex Yeap at KRDL, Singapore.

� Emiel Corten at University of Amsterdam, Netherlands.

� Klaus Dorer at University Freiburg, Germany.

� Helmut Myritz at Humboldt University, Germany.

� Jukka Riekki at Oulu University, Finland.

Besides the authors, we would also like to thank Stefan Sablatn�og from the University

of Ulm, Germany, and Mike Hewett from University of Texas, USA, for a thorough

proofreading of the soccermanual 4.00. We have also received a lot of good suggestions

from Erik Mattsson at the University of Karlskrona/Ronneby, Sweden.

We would not have been able to do this manual without the above mentioned people1.

1The persons listed on the title page are the persons responsible for the di�erent sections of the manual.

i

Acknowledgements

ii

Contents

Acknowledgements i

1. Introduction 1

1.1. Background . 1

1.2. The Goals of RoboCup . 2

1.2.1. Simulated League . 2

1.2.2. What is the Soccerserver . 3

1.3. History . 4

1.3.1. History of the Soccer Server . 4

1.3.2. History of the RoboCup Simulation League 5

1.3.3. History of the Soccer Manual E�ort 8

1.4. About This Manual . 8

1.5. Reader's Guide to the Manual . 8

2. Overview 11

2.1. Getting Started . 11

2.1.1. The Server . 11

2.1.2. The Monitor . 11

2.1.3. The Logplayer . 12

2.2. The Rules of the Game . 12

2.2.1. Rules Judged by the Automated Referee 12

2.2.2. Rules Judged by the Human Referee 13

3. Getting Started 15

3.1. Getting and installing the server . 15

3.2. Download sites . 17

3.3. How to start the server . 18

3.4. How to stop the server . 19

3.5. Supported platforms . 20

3.6. The process of a match . 20

4. Soccer Server 21

4.1. Objects . 21

4.2. Protocols . 22

4.2.1. Client Command Protocol . 22

iii

Contents

4.2.2. Client Sensor Protocol . 25

4.3. Sensor Models . 26

4.3.1. Aural Sensor Model . 26

4.3.2. Vision Sensor Model . 27

4.3.3. Body Sensor Model . 33

4.4. Movement Model . 34

4.4.1. Movement Noise Model . 34

4.4.2. Collision Model . 35

4.5. Action Models . 35

4.5.1. Catch Model . 35

4.5.2. Dash Model (incl. stamina model) 36

4.5.3. Kick Model . 37

4.5.4. Move Model . 41

4.5.5. Say Model . 41

4.5.6. Turn Model . 43

4.5.7. TurnNeck Model . 43

4.6. Heterogeneous Players . 44

4.7. Referee Model . 45

4.7.1. Play Modes and referee messages 45

4.8. The Soccer Simulation . 46

4.8.1. Description of the simulation algorithm 46

4.9. Using Soccerserver . 47

4.9.1. The Soccerserver Parameters . 47

5. The Soccer Monitor 51

5.1. Introduction . 51

5.2. Getting started . 51

5.3. Soccermonitor Communication . 51

5.3.1. Information From Server to Monitor 51

5.3.2. Commands From Monitor to Server 65

5.4. How to record and playback a game . 65

5.4.1. Version 1 Protocol . 66

5.4.2. Version 2 Protocol . 66

5.4.3. Version 3 Protocol . 66

5.5. Settings and Parameters . 67

5.6. What's New . 67

5.6.1. [7.07] . 67

5.6.2. [7.05] . 67

5.6.3. [7.04] . 67

5.6.4. [7.02] . 69

5.6.5. [7.00] . 69

iv

Contents

6. Soccer Client 71

6.1. Protocols . 71

6.1.1. Initialization and Reconnection . 71

6.1.2. Control Commands . 73

6.1.3. Sensor Information . 75

6.2. How to Create Clients . 76

6.2.1. Sample Client . 77

6.2.2. Simple Clients . 79

6.2.3. Tips . 83

7. The coach 85

7.1. Introduction . 85

7.2. Distinction between trainer and online coach 85

7.3. Trainer . 86

7.3.1. Connecting with and without the soccerserver referee 86

7.4. Commands . 86

7.4.1. Commands that can be used only by the trainer 86

7.4.2. Commands that can also be used by the online coach with certain

restrictions . 89

7.4.3. Commands that can be used by both trainer and online-coach . . . 91

7.5. Messages from the server . 92

7.6. Online coach . 93

7.6.1. Introduction . 93

7.6.2. Communication with the players 93

7.6.3. Changing player types in a real game 94

7.7. The standard coach language . 94

7.7.1. General properties . 94

7.7.2. Overview of the �ve message types 95

7.7.3. Semantics and syntax details of info and advice messages 96

7.7.4. Syntax . 99

Trainer commands . 102

Coach commands . 102

Shared Trainer and Online Coach Interactions with the Server 105

8. References and Further Reading 107

8.1. General papers . 107

8.2. Doctoral Theses . 108

8.3. Undergraduate and Master's Theses . 108

8.4. Platforms to start building team upon . 109

8.5. Education-related articles . 109

8.6. Machine Learning . 109

8.7. Decision Making . 109

8.8. Other supporting documents . 109

8.9. Team Descriptions . 109

v

Contents

8.9.1. 1996 . 109

8.9.2. 1997 . 109

8.9.3. 1998 . 109

8.9.4. 1999 . 110

8.9.5. 2000 . 110

8.9.6. 2001 . 110

A. GNU Free Documentation License 111

A.1. Applicability and De�nitions . 111

A.2. Verbatim Copying . 112

A.3. Copying in Quantity . 113

A.4. Modi�cations . 113

A.5. Combining Documents . 115

A.6. Collections of Documents . 116

A.7. Aggregation With Independent Works . 116

A.8. Translation . 116

A.9. Termination . 116

A.10.Future Revisions of This License . 117

Index 118

vi

Contents

vii

1. Introduction

We are in the early days of RoboCup [7], with half a century to go before we can

\. . . build a team of robot soccer players, which can beat a human world cup champion

team" ([6], p. v). The challenge posed by the goal is enormous and inspires hundreds

of researchers yearly throughout the world to engage themselves and their students in

RoboCup. RoboCup has been used as a research challenge in parallel with a usage for

educational purposes, and to stimulate the interest of the public for robotics and arti�cial

intelligence (AI). Each year since 1997, researchers from di�erent countries have gathered

to play the world cup. The event has drawn an increasing amount of interest from the

public, as robotics is still not commonplace.

The intention of this manual1 is to guide the developers of simulated league teams

in the beginning steps, and also serve as a reference manual for the experienced users.

1.1. Background

Mackworth [11] introduced the idea of using soccer-playing robots in research. Unfor-

tunately, the idea did not get the proper response until the idea was further developed

and adapted by Kitano, Asada, and Kuniyoshi, when proposing a Japanese research

programme, called Robot J-League2. During the autumn of 1993, several American re-

searchers took interest in the Robot J-League, and it thereafter changed name to the

Robot World Cup Initiative or RoboCup for short. RoboCup is sometimes referred to as

the RoboCup challenge or the RoboCup domain.

In 1995, Kitano et al. [7] proposed the �rst Robot World Cup Soccer Games and

Conferences to take place in 1997. The aim of RoboCup was to present a new stan-

dard problem for AI and robotics, somewhat jokingly described as the life of AI after

Deep Blue3. RoboCup di�ers from previous research in AI by focusing on a distributed

solution instead of a centralised solution, and by challenging researchers from not only

traditionally AI-related �elds, but also researchers in the areas of robotics, sociology,

real-time mission critical systems, etc.

To co-ordinate the e�orts of all researchers, the RoboCup Federation was formed.

The goal of RoboCup Federation is to promote RoboCup, for example by annually

arranging the world cup tournament. Members of the RoboCup Federation are all active

researchers in the �eld, and represent a number of universities and major companies. As

1Parts of this chapter is taken directly from [16]
2The J-League is the professional soccer league in Japan.
3In reference to Deep Blue and its games with Kasparov, see http://www.chess.ibm.com.

1

1. Introduction

the body of researchers is quite large and widespread, local committees are formed to

promote RoboCup-related events in their geographical area.

1.2. The Goals of RoboCup

The RoboCup Federation has set goals and a timetable for the research. Setting goals

and a timetable are means of pushing the state-of-the-art further, in conjunction with

formalised test-beds. In resemblance with John F. Kennedy's national goal of \landing

a man on the moon and returning him safely to earth" ([4], p. 8276), the main accom-

plishment was not to land a man on the moon and returning him safely, but the overall

technological advancement. Therefore, the most important goal of RoboCup is to ad-

vance the overall technological level of society, and as a more pragmatic goal to achieve

the following:

By mid-21st century, a team of fully autonomous humanoid robot soccer

players shall win the soccer game, comply with the oÆcial rule of the FIFA4,

against the winner of the most recent World Cup [13].

There will be several technological advancements, even if the goal of the robotic soccer

team is not reached, starting with Team-Partitioned, Opaque-Transition Reinforcement

Learning (TPOT-RL) [17] which has found application in the domain of packet routing

in computer networks. TPOT-RL is a distributed learning method in domains where

\agents have limited information about environmental state transitions" ([17], p. 22).

In most RoboCup leagues, the teams consist of either robots or programs that co-

operate in order to defeat the opponent team. RoboCup Rescue and the commentator

exhibition diverge from the other RoboCup leagues. The goal of defeating an opponent

would raise ethical issues in RoboCup Rescue, since we cannot assign comparable utilities

to human lives and buildings. Hence, the focus in RoboCup Rescue is on the co-operative

e�orts between heterogeneous agents. In the commentator exhibition, the goal is to

observe and comment.

Besides the commentator exhibition and RoboCup Rescue, the main body of the

RoboCup challenge consists of several leagues for soccer playing. However, as this manual

is about the simulated league we will only focus on it.

1.2.1. Simulated League

The RoboCup simulator league is based on the RoboCup simulator called the soccer

server [12], a physical soccer simulation system. All games are visualised by displaying

the �eld of the simulator by the soccer monitor on a computer screen. The soccer server

is written to support competition among multiple virtual soccer players in an uncertain

multi-agent environment, with real-time demands as well as semi-structured conditions.

One of the advantages of the soccer server is the abstraction made, which relieves the

4F�ed�eration Internationale de Football Association (FIFA) de�nes the rules of soccer [25].

2

1.2. The Goals of RoboCup

researchers from having to handle robot problems such as object recognition [9], commu-

nications, and hardware issues, e.g., how to make a robot move. The abstraction enables

researchers to focus on higher level concepts such as co-operation and learning.

Since the soccer server provides a challenging environment, i.e., the intentions of

the players cannot mechanically be deduced, there is a need for a referee when playing

a match. The included arti�cial referee is only partially implemented and can detect

trivial situations, e.g., when a team scores. However, there are several hard-to-detect

situations in the soccer server, e.g., deadlocks, which brings the need for a human referee.

All participating teams are also obliged to play according to a gentlemen's agreement,

e.g., not to use loopholes.

Since the �rst version of the soccer server was completed in 1995, there have been

four world cups and one pre-world cup event, not to mention all other RoboCup-related

events. The 1996 pre-RoboCup event [5] was held in Osaka, with only seven entrants

in the competition which ended with a Japanese victory by the team Ogalets from

Tokyo University. In Nagoya the following year, the �rst formal competition was held in

conjunction with the IJCAI'97 conference. The competition had 29 teams participating,

and the winner was AT Humboldt [2]. The RoboCup world cup of 1998 was played in

conjunction with the human world cup in Paris, and the winning team was CMUnited98

[27]. During the world cup, media was heavily covering the event, as it was public in a

museum in the suburbs of Paris. The year after, the world cup was held in conjunction

with IJCAI'99 in Stockholm, and the winners (once again) were CMUnited99 [28]. An

unchanged version of the champion team must participate, as a benchmark, in the next

world cup. The benchmarking teams have always been able to win their group, but only

in 2000 did the benchmark team advance further than the �rst game after group play.

1.2.2. What is the Soccerserver

Soccer Server is a system that enables autonomous agents consisting of programs written

in various languages to play a match of soccer (association football) against each other.

A match is carried out in a client/server style: A server, soccerserver, provides a

virtual �eld and simulates all movements of a ball and players. Each client controls

movements of one player. Communication between the server and each client is done

via UDP/IP sockets. Therefore users can use any kind of programing systems that have

UDP/IP facilities.

The soccerserver consists of 2 programs, soccerserver and soccermonitor. Soccer Server

is a server program that simulates movements of a ball and players, communicates with

clients, and controls a game according to rules. Soccermonitor is a program that dis-

plays the virtual �eld from the soccerserver on the monitor using the X window system.

A number of soccermonitor programs can connect with one soccerserver, so we can

display �eld-windows on multiple displays.

A client connects with soccerserver by an UDP socket. Using the socket, the client

sends commands to control a player of the client and receives information from sensors of

the player. In other words, a client program is a brain of the player: The client receives

visual and auditory sensor information from the server, and sends control-commands to

3

1. Introduction

the server.

Each client can control only one player56. So a team consists of the same number of

clients as players. Communications between the clients must be done via soccerserver

using say and hear protocols. (See section 4.2.1.) One of the purposes of soccerserver is

evaluation of multi-agent systems, in which eÆciency of communication between agents

is one of the criteria. Users must realize control of multiple clients by such restricted

communication.

1.3. History

In this section we will �rst describe the history of the soccerserver and thereafter the

history of the RoboCup Simulation League. To end the section we will also describe the

history of the manual e�ort.

1.3.1. History of the Soccer Server

The �rst, preliminary, original system of soccerserver was written in September of 1993

by Itsuki Noda, ETL. This system was built as a library module for demonstration of

a programming language called MWP, a kind of Prolog system that has multi-threads

and high level program manipulation. The module was a closed system and displayed a

�eld on a character display, that is VT100.

The �rst version (version 0) of the client-server style server was written in July of

1994 on a LISP system. The server shows the �eld on an X window system, but each

player was shown in an alphabet character. It used the TCP/IP protocol for connections

with clients. This LISP version of soccerserver became the original style of the current

soccerserver. Therefore, the current soccerserver uses S-expressions for the protocol

between clients and the server.

The LISP version of soccerserver was re-written in C++ in August of 1995 (version

1). This version was announced at the IJCAI workshop on Entertainment and AI/Alife

held in Montreal, Canada, August 1995.

The development of version 2 started January of 1996 in order to provide the oÆcial

server of preRoboCup-96 held at Osaka, Japan, November 1996. From this version, the

system is divided into two modules, soccerserver and soccerdisplay (currently, soccer-

monitor). Moreover, the feature of coach mode was introduced into the system. These

two features enabled researchers on machine learning to execute games automatically.

Peter Stone at Carnegie Mellon University joined the decision-making process for the

development of the soccerserver at this stage. For example, he created the con�guration

�les that were used at preRoboCup-96.

After preRoboCup-96, the development of the oÆcial server for the �rst RoboCup,

RoboCup-97 held at Nagoya, Japan, August 1997, started immediately, and the version

5Technically, it is easy to cheat the server. Therefore this is a gentleman's agreement.
6In order to test various kinds of systems, we may permit a client to control multiple players if the

di�erent control modules of players are separated logically from each other in the client.

4

1.3. History

3 was announced in February of 1997. Simon Ch'ng at RMIT joined decisions of regu-

lations of soccerserver from this stage. The following features were added into the new

version:

� logplayer

� information about movement of seen objects in visual information

� capacity of hearing messages

The development of version 4 started after RoboCup-97, and announced November

1997. From this version, the regulations are discussed on the mailing list organized by

Gal Kaminka. As a result, many contributers joined the development. Version 4 had

the following new features:

� more realistic stamina model

� goalie

� handling o�side rule

� disabling players for evaluation

� facing direction of players in visual information

� sense body command

Version 4 was used in Japan Open 98, RoboCup-98 and Paci�c Rim Series 98.

Version 5 was used in Japan Open 99, and will also be used in RoboCup-99 in

Stockholm during the summer of 1999.

In Melbourne 2000, version 6 was used, and for the world cup in 2001 version 7 will

be used.

1.3.2. History of the RoboCup Simulation League

The RoboCup simulation league has had �ve main oÆcial events: preRoboCup-96,

RoboCup-97, RoboCup-98, RoboCup-99, and RoboCup 2000. Research results have

been reported extensively in the proceedings of the workshops and conferences asso-

ciated with these competitions. In this section, we focus mainly on the competitions

themselves.

preRoboCup-96

preRoboCup-96 was the �rst robotic soccer competition of any sort. It was held on

November 5{7, 1996 in Osaka, Japan [5]. In conjunction with the IROS-96 conference,

preRoboCup-96 was meant as an informal, small-scale competition to test the RoboCup

soccerserver in preparation for RoboCup-97. 5 of the 7 entrants were from the Tokyo

region. The other 2 were from Ch'ng at RMIT and Stone and Veloso from CMU.

The winning teams were entered by:

5

1. Introduction

1. Ogawara (Tokyo University)

2. Sekine (Tokyo Institute of Technology)

3. Inoue (Waseda University)

4. Stone and Veloso (Carnegie Mellon University)

In this tournament, team strategies were generally quite straightforward. Most of

the teams kept players in �xed locations, only moving them towards the ball when it

was nearby.

RoboCup-97

The RoboCup-97 simulator competition was the �rst formal simulated robotic soccer

competition. It was held on August 23{29, 1997 in Nagoya, Japan in conjunction with

the IJCAI-97 conference [6]. With 29 teams entering from all around the world, it was

a very successful tournament.

The winning teams were entered by:

1. Burkhard et al. (Humboldt University)

2. Andou (Tokyo Institute of Technology)

3. Tambe et al. (ISI/University of Southern California)

4. Stone and Veloso (Carnegie Mellon University)

In this competition, the champion team exhibited clearly superior low-level skills.

One of its main advantages in this regard was its ability to kick the ball harder than

any other team. Its players did so by kicking the ball around themselves, continually

increasing its velocity so that it ended up moving towards the goal faster than was

imagined possible. Since the soccerserver did not (at that time) enforce a maximum ball

speed, a property that was changed immediately after the competition, the ball could

move arbitrarily fast, making it almost impossible to stop. With this advantage at the

low-level behavior level, no team, regardless of how strategically sophisticated, was able

to defeat the eventual champion.

At RoboCup-97, the RoboCup scienti�c challenge award was introduced. Its purpose

is to recognize scienti�c research results regardless of performance in the competitions.

The 1997 award went to Sean Luke [10] of the University of Maryland "for demonstrating

the utility of evolutionary approach by co-evolving soccer teams in the simulator league."

RoboCup-98

The second international RoboCup championship, RoboCup-98, was held on July 2{9,

1998 in Paris, France [1]. It was held in conjunction with the ICMAS-98 conference.

The winning teams were entered by:

6

1.3. History

1. Stone et al. (Carnegie Mellon University)

2. Burkhard et al. (Humboldt University)

3. Corten and Rondema (University of Amsterdam)

4. Tambe et al. (ISI/University of Southern California)

Unlike in the previous year's competition, there was no team that exhibited a clear

superiority in terms of low-level agent skills. Games among the top three teams were all

quite closely contested with the di�erences being most noticeable at the strategic, team

levels.

One interesting result at this competition was that the previous year's champion

team competed with minimal modi�cations and �nished roughly in the middle of the

�nal standings. Thus, there was evidence that as a whole, the �eld of entries was much

stronger than during the previous year: roughly half the teams could beat the previous

champion.

The 1998 scienti�c challenge award was shared by Electro Technical Laboratory

(ETL), Sony Computer Science Laboratories, Inc., and German Research Center for

Arti�cial Intelligence GmbH (DFKI) for "development of fully automatic commentator

systems for RoboCup simulator league."

To encourage the transfer of results from RoboCup to the scienti�c community at

large, RoboCup-98 was the �rst to host the Multi-Agent Scienti�c Evaluation Session.

13 di�erent teams participated in the session, in which their adaptability to loss of team-

members was evaluated comparatively. Each team was played against the same �xed

opponent (the 1997 winner, AT Humboldt'97) four half-games under oÆcial RoboCup

rules. The �rst half-game (phase A) served as a base-line. In the other three half-

games (phases B-D), 3 players were disabled incrementally: A randomly chosen player,

a player chosen by the representative of the �xed opponent to maximize "damage" to

the evaluated team, and the goalie. The idea is that a more adaptive team would be

able to respond better to these.

Very early on, even during the session itself, it became clear that while in fact

most participants agreed intuitively with the evaluation protocol, it wasn't clear how to

quantitatively, or even qualitatively, analyse the data. The most obvious measure of the

goal-di�erence at the end of each half may not be suÆcient: some teams seem to do better

with less players, some do worse. Performance, as measured by the goal-di�erence, really

varied not only from team to team, but also for the same team between phases. The

evaluation methodology itself and analysis of the results became open research problems

in themselves. To facilitate this line of research, the data from the evaluation was made

public at: http://www.isi.edu/~galk/Eval/

RoboCup-99

The third international RoboCup championship, RoboCup-99, was held in late July

and early August, 1999 in Stockholm, Sweden [3]. It was held in conjunction with the

IJCAI-99 conference.

7

1. Introduction

RoboCup 2000

The fourth international RoboCup championship, RoboCup 2000, was held in early

September, 2000 in Melbourne, Australia [14]. It was held in conjunction with the

PRICAI-2000 conference.

1.3.3. History of the Soccer Manual E�ort

The �rst versions of the manual were written by Itsuki Noda, while developing the

soccerserver, and around version 3.00 there were several requests on an updated manual,

to better correspond to the server as well as enable newcomers to more easily participate

in the RoboCup World Cup Initiative. In the fall of 1998 Peter Stone initiated the Soccer

Manual E�ort, over which Johan Kummeneje took responsibility to organize and as a

result the Soccer Server Manual version 4.0 was released on the 1st of November 1998.

In 1999, the manual for the soccerserver version 5.0 was released. Unfortunately the

manual lost part of its pace, and there was no release of the manual for soccerserver

version 6.0.

Since 1999, the soccerserver has changed major version to 7 and is continuously

developed. Therefore the Soccer Manual E�ort has developed a new version, which you

are currently reading.

1.4. About This Manual

This manual is the joint e�ort of the authors from a diverse range of universities and

organizations, which build upon the original work of Itsuki Noda.

If there are errors, inconsistencies, or oddities, please notify johank@dsv.su.se or fruit@uni-koblenz.de

with the location of the error and a suggestion of how it should be corrected.

We are always looking for anyone who has an idea on how to improve the manual,

as well as proofread or (re)write a section of the manual. If you have any ideas, or feel

that you can contribute with anything to the SoccerServer Manual E�ort please mail

johank@dsv.su.se or fruit@uni-koblenz.de.

The latest manual can be downloaded at http://www.dsv.su.se/~johank/RoboCup/

manual.

1.5. Reader's Guide to the Manual

The thesis is written for a wide range of readers, and therefore the chapters are not

equally important to all readers. We shortly describe the remaining chapters to give an

overview of the thesis.

Chapter 2 introduces the concepts of the simulated league and will help the newcomer

to get to terms with the di�erent parts.

Chapter 3 helps the beginners to start compiling and running the software.

Chapter 4 describes the soccerserver.

Chapter 5 describes the soccermonitor.

8

1.5. Reader's Guide to the Manual

Chapter 6 describes the soccerclient and how to create one.

Chapter 7 describes the coachclient.

Chapter 8 suggests some further reading.

9

1. Introduction

10

2. Overview

2.1. Getting Started

This section is designed to give you a quick introduction to the main components of the

RoboCup simulator. For each of these components you will �nd detailed information

(i.e. con�guration parameters, run-time options, etc.) later on in this manual.

2.1.1. The Server

The server is a system that enables various teams to compete in a game of soccer. Since

the match is carried out in a client-server style, there are no restrictions as to how

teams are built. The only requirement is that the tools used to develop a team support

client-server communication via UDP/IP. This is due to the fact that all communication

between the server and each client is done via UDP/IP sockets. Each client is a separate

process and connects to the server through a speci�ed port. A team can have up to 11

clients (or players). After a player connects with the server, all messages are transferred

through this port. The players send requests to the server regarding the actions they

want to perform (e.g. kick the ball, turn, run, etc.). The server receives those messages,

handles the requests, and updates the environment accordingly. In addition, the server

provides all players with sensory information (e.g. visual data regarding the position

of the ball, goals, and other players). It is important to mention that the server is

a real-time system working with discrete time intervals (or cycles). Each cycle has a

speci�ed duration, and actions that need to be executed in a given cycle, must arrive to

the server during the right interval. Therefore, slow performance that results in missing

acting opportunities has a major impact on the performance of the team.

2.1.2. The Monitor

The monitor is a visualisation tool that allows people to see what is happening within

the server during a game. The information shown on the monitor includes the score,

team names, and the positions of all the players and the ball. The monitor also provides

a simple interface to the server. For example, when both teams have connected, the

"Kick-O�" button on the monitor allows a human referee to start the game. As you

will discover later on, to run a game on the server, a monitor is not required. However,

if needed, a number of monitors can be connected to the server at the same time (for

example if you want to show the same game at di�erent terminals).

11

2. Overview

2.1.3. The Logplayer

The logplayer can be thought of as a video player. It is a tool that is used to replay

matches. When running the server, certain options can be used that will cause the server

to store all the data for a given match on the hard drive. (Pretty much like pressing

the record button on your video). Then, the logplayer combined with a monitor can be

used to replay that game as many times as needed. This is quite usefull for doing team

analysis and discovering the strong or weak points of a team. Much like a video player,

the logplayer is equipped with play, stop, fast forward and rewind buttons. Also the

logplayer allows you to jump to a particular cycle in a game (for example if you only

want to see the goals).

2.2. The Rules of the Game

During a game, a number of rules are enforced either by the automated referee within

the server, or by a human referee. The aim of this section is to describe how these rules

work, and how they a�ect the game.

2.2.1. Rules Judged by the Automated Referee

Kick-O�

Just before a kick o� (either before the game starts, or after every goal), all players

must be in their own half. To allow for this to happen, after a goal is scored, the referee

suspends the match for an interval of 5 seconds. During this interval, players can use

the move command to teleport to a position, rather than run to this position, which is

much slower and consumes stamina. If a player remains in the opponent half after the

5-second interval has expired, the referee moves the player to a random position within

their own half.

Goal

When a team scores, the referee performs a number of tasks. Initially, it announces the

goal by broadcasting a message to all players. It also updates the score, moves the ball

to the centre mark, and changes the play-mode to kick o� x (where x is either left or

right). Finally, it suspends the match for 5 seconds allowing players to move back to

their own half (as described above in the "Kick-O�" section).

Out of Field

When the ball goes out of the �eld, the referee moves the ball to a proper position (a

touchline, corner or goal-area) and changes the play-mode to kick in, corner kick, or

goal kick. In the case of a corner kick, the referee places the ball at (1m, 1m) inside the

appropriate corner of the �eld.

12

2.2. The Rules of the Game

Player Clearance

When the play-mode is kick o�, kick in, or corner kick, the referee removes all defending

players located within a circle centred on the ball. The radius of this circle is a param-

eter within the server (normally 9.15 meters). The removed players are placed on the

perimeter of that circle. When the play-mode is o�side, all o�ending players are moved

back to a non-o�side position. O�ending players in this case are all players in the o�side

area and all players inside a circle with radius 9.15 meters from the ball. When the

play-mode is goal kick, all o�ending players are moved outside the penalty area. The

o�ending players cannot re-enter the penalty area while the goal kick takes place. The

play-mode changes to play on immediately after the ball goes outside the penalty area.

Play-Mode Control

When the play-mode is kick o�, kick in, or corner kick, the referee changes the play-

mode to play on immediately after the ball starts moving through a kick command.

Half-Time and Time-Up

The referee suspends the match when the �rst or the second half �nishes. The default

length for each half is 3000 simulation cycles (about 5 minutes). If the match is drawn

after the second half, the match is extended. Extra time continues until a goal is scored.

The team that scores the �rst goal in extra time wins the game. This is also known as

the \golden goal" rule or \sudden death".

2.2.2. Rules Judged by the Human Referee

Fouls like \obstruction" are diÆcult to judge automatically because they concern play-

ers' intentions. To resolve such situations, the server provides an interface for human-

intervention. This way, a human-referee can suspend the match and give free kicks

to either of the teams. The following are the guidelines that were agreed prior to the

RoboCup 2000 competition.

� Surrounding the ball

� Blocking the goal with too many players

� Not putting the ball into play after a given number of cycles

� Intentionally blocking the movement of other players

� Abusing the goalie catch command (the goalie may not repeatedly kick and catch

the ball, as this provides a safe way to move the ball anywhere within the penalty

area).

13

2. Overview

Flooding the Server with Messages

A player should not send more than 3 or 4 commands per simulation cycle to the soccer

server. Abuse may be checked if the server is jammed, or upon request after a game.

Inappropriate Behaviour

If a player is observed to interfere with the match in an inappropriate way, the human-

referee can suspend the match and give a free kick to the opposite team.

14

3. Getting Started

This section contains all the information necessary to get the Soccer Server source �les

and to install the software. The procedure shown was performed on a computer running

GNU/Linux 2.2.17 (check your version with uname -sr) with egcs 2.91.66 (check your

version with which g++) but any reasonably up-to-date installation should do it. In the

commands shown below, -> is supposed to be the command-line prompt.

3.1. Getting and installing the server

➀ Get source �les from one of the Soccer Server sites:

� http://ci.etl.go.jp/~noda/soccer/server/ (Japan)

� http://www.robolog.org/server/ (Germany)

This is done by :

a) clicking the Download link and

b) getting the gziped �le sserver-*.tar.gz

where * is the version number1 of the software. This �le contains all the necessary

sources for Soccer Server and can be found either by going directly to the Soccer

Server FTP site at http://www.uni-koblenz.de/ag-ki/ROBOCUP/sserver/pub/

soccer/server/ or by clicking the Newest version link from the download page.

➁ Extract the source �les by running:

-> tar zxvf sserver-*.tar.gz

A directory sserver-* is created. Now, change the working directory to sserver-*.

This directory contains the following �les:

-> ls -a

. Makefile logplay sserver

.. README logplayer sserver-csh.tmpl

.cvsignore coach_lang_grammar monitor sserver-tcsh.tmpl

1Version 7.04 is the current version at the time of writing (March 2001). The example list is output

for version 7.04.

15

3. Getting Started

Acknowledgement configure recfile_change sserver.org

Changes configure2 sampleclient sserver.tmpl

Licence drawcheck server tools

Always read the README �le �rst:

-> cd sserver-7.04

-> more README

[Directories]

server/

Source files of soccerserver

monitor/

Source files of soccermonitor

sampleclient/

Source files of a very simple client

[How to Make]

(1) Do configure

(2) Do make

[How to Start]

(1) start soccerserver.

(2) start a couple of soccermonitors you want.

"sserver" is a sample script to invoke soccerserver and soccermonitor.

[Required Softwares]

GCC 2.7.0 or later

X11R5 or R6

Some old version of R5 may cause problems of display.

[Suppoted OSs]

SunOS 4.1.x

Solaris 2.x

DEC OSF1

Linux RH 4.xx, 5.xx, 6.xx

The rest of the README �le contains the license under which you may use and

modify the software. Please, make sure you read it in your own time.

➂ Do \configure" following the instructions in the README �le for your platform:

-> ./configure

16

3.2. Download sites

Do you use X11R6.x? [y or n]

[default=y]:y

Enter X11R6 includes directory.

[default=/usr/X11R6/include]:

Enter X11R6 libraries directory.

[default=/usr/X11R6/lib]:

Do you use dynamic linking? [y or n]

[default=y]:y

Enter compiler flag(s).

[default=-O2 -pipe]:

Configuration Summary:

OS type = Linux_22

X11 revision = 6

X11 include PATH = /usr/X11R6/include

X11 libraries PATH = /usr/X11R6/lib

Link style = Dynamic

Compiler flag(s) = -O2 -pipe

Creating Makefile...[server][monitor][sampleclient][recfile_change][logplayer][drawcheck]

Creating sserver script.

Done.

➃ Do \make"

-> make

g++ -c -pipe -DLinux -DLinux_2_2 main.C

g++ -c -pipe -DLinux -DLinux_2_2 field.C

g++ -c -pipe -DLinux -DLinux_2_2 object.C

g++ -c -pipe -DLinux -DLinux_2_2 netif.C

.

.

.

g++ -c -O2 -pipe -DLinux -DLinux_2_2 -I../server drawcheck.C

g++ -c -O2 -pipe -DLinux -DLinux_2_2 -I../server netif.C

g++ -o drawcheck drawcheck.o netif.o -lm

If there are errors in the make, please check the g++ environment in your system.

3.2. Download sites

There are two download sites for the Soccer Server:

1. http://ci.etl.go.jp/~noda/soccer/server/ (Japan)

17

3. Getting Started

2. http://www.robolog.org/server/ (Germany)

The original home of the Soccer Server is the top site but it is soon to go out of

commission. At the time of writing (March 2001) both sites are still up-and-running

but the German site is to take over as the oÆcial home of the Soccer Server at some

point in the summer of 2001. Users are prompted to use the German site to avoid future

problems.

3.3. How to start the server

The sserver-* directory contains a sserver �le. This is a shell script that is made by

configure. Running it with sserver does three things :

1. it starts a Soccer Server

2. it starts a Soccer Monitor

3. when no longer needed, it stops the Soccer Server process

The Soccer Server runs in the background and produces some output to the terminal

where the script was started from. Also, a window appears on the screen. This window

is the Soccer Monitor so the user can actually watch the game. The output of running

the sserver script should look like this :

-> sserver

Soccer Server Ver. 7.04

Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000 Electrotechnical Laboratory.

Itsuki Noda, Yasuo Kuniyoshi and Hitoshi Matsubara.

2001 RoboCup Soccer Server Maintainance Group.

Patrick Riley, Tom Howard, Jan Wendler, Itsuki Noda

wind factor: rand: 0.000000, vector: (0.000000, 0.000000)

In order to actually start a match on the Soccer Server, the user must connect some

clients to the server (maximum of 11 per side). When these clients are ready, the user

can click the Kick Off button on the Soccer Monitor to start the game. It is likely that

you have not yet programmed your own clients, in which case, you can read section 3.6

for instructions how to set up a whole match with two of the available teams that other

RoboCuppers have contributed.

Also, there is a sample client included with every distribution of the Soccer Server

which can be found in the sampleclient directory. To run one of these clients :

-> cd sampleclient

-> ls

Makefile Makefile.tmpl2 client.c client.o

Makefile.tmpl client client.h

-> client

18

3.4. How to stop the server

Running client attempts to connect to the server using default parameters (host=localhost,

port=6000). Of course, these server parameters can be changed using the arguments that

Soccer Server accepts when it is started. When the client is started, you need to initialise

its connection to the server. The sampleclient is made so that the user types Soccer

Server commands on the command line. So, to initialise the connection :

(init MyTeam)

You will notice that one of the two teams is now named \MyTeam" and one of the

players that are standing by the side-line is active. This player corresponds to the client

you've just initialised. Also, notice the information that the client writes on the terminal.

This is what the client receives from the server. In the following text, the �rst two lines

correspond to the initialisation2 and the other data is the information that the server

sends to this client :

send 6000 : (init MyTeam)

recv 1067 : (init l 1 before_kick_off)

recv 1067 : (see 0 ((goal r) 66.7 33) ((flag r t) 55.7 3)

((flag p r t) 42.5 23) ((flag p r c) 53.5 43))

recv 1067 : (see 0 ((goal r) 66.7 33) ((flag r t) 55.7 3)

((flag p r t) 42.5 23) ((flag p r c) 53.5 43))

You can still type commands (such as (move 0 0) or (turn 45)) that the player

will then send to the server. You should be able to see the result of these commands on

the Soccer Monitor window.

3.4. How to stop the server

The correct procedure for stopping the server is :

1. Stop all clients (players)

2. Stop all Soccer Monitors by clicking on the Quit button

3. Hit ctrl-c at the terminal window where you started the Soccer Server in order

to terminate it

If you follow this procedure, you will not only stop all visible running processes but

also make sure that all those processes that may be running in the background (such as

the Soccer Server) are also stopped. The problem that arises when you don't properly

shut down the Soccer Server is that you may not be able to start another process unless

you start it with di�erent parameters.

2The response from the server means that the client plays for the left side, has the number one and the

play mode is before kick o�

19

3. Getting Started

NOTE : It is sometimes useful and convenient to terminate processes using their

name. Using the kill operating system command involves �nding the process number

of the process you want to stop using the ps command. A simpler way to eradicate all

processes that have a speci�c name is by means of the killall command, for example

: \killall soccermonitor" is suÆcient to kill all processes with the name Soccer

Monitor.

3.5. Supported platforms

The Soccer Server supports the following platforms3 :

� SunOS 4.1.x

� Solaris 2.x

� DEC OSF1

� Linux RedHat 4.xx, 5.xx, 6.xx

3.6. The process of a match

3Supported platforms may change. Please, check the README �le that came with your version of the

software.

20

4. Soccer Server

4.1. Objects

distance
direction

GameObject

StationaryObject

direction_change
distance_change
speed_vector

MobileObject

FieldObject Line

position line_id

Marker

marker_id

Ball

team
side
uniform_number
body_direction
face_direction
neck_direction

Player

Figure 4.1.: UML diagram of the objects in the simulation

21

4. Soccer Server

4.2. Protocols

4.2.1. Client Command Protocol

Connecting, reconnecting, and disconnecting

From client to server From server to client

(init TeamName [(version VerNum)] [(goalie)]) (init Side Unum PlayMode)

TeamName ::= (�j ja� zjA� Zj0� 9)+

VerNum ::= the protocol version (e.g. 7.0)

Side ::= l j r

Unum ::= 1 � 11

PlayMode ::= one of play modes

(error no more team or player or goalie)

(reconnect TeamName Unum) (init Side Unum PlayMode)

TeamName ::= (�j ja� zjA� Zj0� 9)+
Side ::= l j r

Unum ::= 1 � 11
PlayMode ::= one of play modes

(error no more team or player)
(error reconnect)

(bye)

If your client connects or reconnects sucessfully with a protocol version � 7:0, the

server will additionally send following messages: a message containing the server param-

eters, a message containing the player parameters and a message containing the player

types. The format is given below. Finally, the player will receive a message on changed

players (see Sec. 4.6).

� (server param gwidth inertia moment psize pdecay prand pweight pspeed max

paccel max stamina max stamina inc recover init recover dthr recover min

recover dec e�ort init e�ort dthr e�ort min e�ort dec e�ort ithr e�ort inc

kick rand team actuator noise prand factor l prand factor r kick rand factor l

kick rand factor r bsize bdecay brand bweight bspeed max baccel max dprate

kprate kmargin ctlradius ctlradius width maxp minp maxm minm maxnm

minnmmaxn minn visangle visdist windir winforce winang winrand kickable area

catch area l catch area w catch prob goalie max moves ckmargin o�side area

win no win random say cnt max SayCoachMsgSize clang win size clang de�ne win

clang meta win clang advice win clang info win clang mess delay clang mess per cycle

half time sim st send st recv st sb step lcm st SayMsgSize hear max hear inc

hear decay cban cycle slow down factor useo�side kicko�o�side o�side kick margin

audio dist dist qstep land qstep dir qstep dist qstep l dist qstep r land qstep l

land qstep r dir qstep l dir qstep r CoachMode CwRMode old hear sv st

start goal l start goal r fullstate l fullstate r drop time)

� (player param player types subs max pt max player speed max delta min

player speed max delta max stamina inc max delta factor player decay delta min

player decay delta max inertia moment delta factor dash power rate delta min

dash power rate delta max player size delta factor kickable margin delta min

kickable margin delta max kick rand delta factor extra stamina delta min

extra stamina delta max e�ort max delta factor e�ort min delta factor)

22

4.2. Protocols

� for each available player type a message of the form

(player type id player speed max stamina inc max player decay inertia moment

dash power rate player size kickable margin kick rand extra stamina e�ort max

e�ort min)

Client Control

From client to server Only once per cycle

(catch Direction) Yes

Direction ::= minmoment � maxmoment degrees

(change view Width Quality) No

Width ::= narrow j normal j wide

Quality ::= high j low

(dash Power) Yes

Power ::= minpower � maxpower

Note: backward dash consumes double stamina.

(kick Power Direction) Yes

Power ::= minpower � maxpower

Direction ::= minmoment � maxmoment degrees

(move X Y) Yes

X ::= -52.5 � 52.5
Y ::= -34 � 34

(say Message) No

Message ::= a message

(sense body) No

The server returns

(sense body Time

(view mode fhigh j lowg fnarrow j normal j wideg)
(stamina Stamina E�ort)
(speed AmountOfSpeed DirectionOfSpeed)
(head angle HeadAngle)
(kick KickCount)
(dash DashCount)
(turn TurnCount)
(say SayCount)
(turn neck TurnNeckCount)
(catch CatchCount)
(move MoveCount)
(change view ChangeViewCount))

(score) No

The server returns

(score Time OurScore TheirScore)

(turn Moment) Yes

Moment ::= minmoment � maxmoment degrees

(turn neck Angle) Yes

Angle ::= minneckmoment � maxneckmoment degrees

turn neck is relative to the direction of the body.

Can be invoked in the same cycle as a turn, dash or kick.

The server may respond to the above commands with the errors:

(error unknown command)

(error illegal command form)

23

4. Soccer Server

24

4.2. Protocols

4.2.2. Client Sensor Protocol

From server to client

(hear Time Sender "Message")

Time ::= simulation cycle of the soccerserver
Sender ::= online coach left j online coach right j referee j self j Direction

Direction ::= -180 �180 degrees

Message ::= string

(see Time ObjInfo+)
Time ::= simulation cycle of the soccerserver

ObjInfo ::= (ObjName Distance Direction DistChange DirChange BodyFacingDir HeadFacingDir)
j (ObjName Distance Direction DistChange DirChange

j (ObjName Distance Direction)
j (ObjName Direction)

ObjName ::= (p ["Teamname" [UniformNumber [goalie]]])
j (b)
j (g [ljr])
j (f c)
j (f [ljcjr] [tjb])
j (f p [ljr] [tjcjb])
j (f g [ljr] [tjb])
j (f [ljrjtjb] 0)
j (f [tjb] [ljr] [10j20j30j40j50])
j (f [ljr] [tjb] [10j20j30])
j (l [ljrjtjb])
j (B)
j (F)
j (G)
j (P)

Distance ::= positive real number

Direction ::= -180 �180 degrees

DistChange ::= real number

DirChange ::= real number

HeadFaceDir ::= -180 �180 degrees

BodyFaceDir ::= -180 �180 degrees

Teamname ::= string

UniformNumber ::= 1 �11

(sense body Time

(view mode fhigh j lowg fnarrow j normal j wideg)
(stamina Stamina E�ort)
(speed AmountOfSpeed DirectionOfSpeed)
(head angle HeadAngle)
(kick KickCount)
(dash DashCount)
(turn TurnCount)
(say SayCount)
(turn neck TurnNeckCount)
(catch CatchCount)
(move MoveCount)
(change view ChangeViewCount))
Time ::= simulation cycle of the soccerserver

Stamina ::= positive real number

E�ort ::= positive real number

AmountOfSpeed ::= positive real number

DirectionOfSpeed ::= -180 �180 degrees

HeadAngle ::= -180 �180 degrees

*Count ::= positive integer

25

4. Soccer Server

4.3. Sensor Models

A RoboCup agent has three di�erent sensors. The aural sensor detects messages sent

by the referee, the coaches and the other players. The visual sensor detects visual

information about the �eld, like the distance and direction to objects in the player's

current �eld of view. The visual sensor also works as a proximity sensor by \seeing"

objects that are close, but behind the player. The body sensor detects the current

\physical" status of the player, like its stamina, speed and neck angle. Together the

sensors give the agent quite a good picture of the environment.

4.3.1. Aural Sensor Model

Aural sensor messages are sent when a client or a coach sends a say command. The calls

from the referee is also received as aural messages. All messages are received immediately.

The format of the aural sensor message from the soccer server is:

(hear Time Sender "Message")

Time indicates the current time.

Sender is the relative direction to the sender if it is another player, otherwise it is

one of the following:

self: when the sender is yourself.

referee: when the sender is the referee.

online coach left or online coach right: when the sender is one of the

online coaches.

Message is the message. The maximum length is say msg size bytes. The possible

messages from the referee are described in Section 4.7.1.

The server parameters that a�ects the aural sensor are described in Tab. 4.1.

Parameter in server.conf Value

audio cut dist 50.0

hear max 2

hear inc 1

hear decay 2

say msg size 512

Table 4.1.: Parameters for the aural sensor

26

4.3. Sensor Models

Capacity of the Aural Sensor

A player can only hear a message if the player's hear capacity is at least hear decay,

since the hear capacity of the player is decreased by that number when a message is

heard. Every cycle the hear capacity is increased with hear inc. The maximum hear

capacity is hear max. To avoid a team from making the other team's communication

useless by overloading the channel the players have separate hear capacities for each

team. With the current server.conf �le this means that a player can hear at most one

message from each team every second simulation cycle.

If more messages arrive at the same time than the player can hear the messages

actually heard are unde�ned. (The current implementation choose the messages accord-

ing to the order of arrival.) This rule does not include messages from the referee, or

messages from oneself. In other words, a player can say a message and hear a message

from another player in the same timestep.

Range of Communication

A message said by a player is transmitted only to players within audio cut dist meters

from that player. For example, a defender, who may be near his own goal, can hear a

message from his goal-keeper but a striker who is near the opponent goal can not hear

the message. Messages from the referee can be heard by all players.

Aural Sensor Example

This example should show which messages get through and how to calculated the hear

capacity.

Example: Each coach sends a message every cycle. The referee send a message every

cycle. The four players in the example all send a message every cycle. Show which

messages gets through during 10 cycles (6 might be enough).

4.3.2. Vision Sensor Model

The visual sensor reports the objects currently seen by the player. The information is

automatically sent to the player every sense step, currently 150, milli-seconds.

Visual information arrives from the server in the following basic format:

(see ObjName Distance Direction DistChng DirChng BodyDir HeadDir)

where

27

4. Soccer Server

ObjName ::= (p "Teamname" UniformNumber goalie)

j (g [ljr])

j (b)

j (f c)

j (f [ljcjr] [tjb])

j (f p [ljr] [tjcjb])

j (f g [ljr] [tjb])

j (f [ljrjtjb] 0)

j (f [tjb] [ljr] [10j20j30j40j50])

j (f [ljr] [tjb] [10j20j30])

j (l [ljrjtjb])

Distance, Direction, DistChng and DirChng are calculated in the following way:

prx = pxt � pxo (4.1)

pry = pyt � pyo (4.2)

vrx = vxt � vxo (4.3)

vry = vyt � vyo (4.4)

Distance =
q
p2
rx
+ p2

ry
(4.5)

Direction = arctan (pry=prx)� ao (4.6)

erx = prx=Distance (4.7)

ery = pry=Distance (4.8)

DistChng = (vrx � erx) + (vry � ery) (4.9)

DirChng = [(�(vrx � ery) + (vry � erx))=Distance] � (180=�) (4.10)

BodyDir = PlayerBodyDir�AgentBodyDir�AgentHeadDir (4.11)

HeadDir = PlayerHeadDir�AgentBodyDir�AgentHeadDir (4.12)

where (pxt; pyt) is the absolute position of the target object, (pxo; pyo) is the absolute

position of the sensing player, (vxt; vyt) is the absolute velocity of the target object,

(vxo; vyo) is the absolute velocity of the sensing player, and ao is the absolute direction

the sensing player is facing. The absolute facing direction of a player is the sum of the

BodyDir and the HeadDir of that player. In addition to it, (prx; pry) and (vrx; vry) are

respectively the relative position and the relative velocity of the target, and (erx; ery)

is the unit vector that is parallel to the vector of the relative position. BodyDir and

HeadDir are only included if the observed object is a player, and is the body and head

directions of the observed player relative to the body and head directions of the observing

player. Thus, if both players have their bodies turned in the same direction, then

BodyDir would be 0. The same goes for HeadDir.

The (goal r) object is interpreted as the center of the right hand side goalline. (f c)

is a virtual
ag at the center of the �eld. (f l b) is the
ag at the lower left of the �eld.

(f p l b) is a virtual
ag at the lower right corner of the penalty box on the left side

28

4.3. Sensor Models

(flag b l 50)

(flag l t 30)

(flag l t 10)

(flag l 0)

(flag l b 10)

(flag l b 30)

(flag l t 20)

(flag l b 20)

(flag b l 20)(flag b l 40)

(flag b l 10) (flag b r 10) (flag b r 30)

(flag b r 40)

(flag b r 50)(flag b l 30)

(flag b r 20)

(flag b 0)

(goal l)

(flag g l b)

(flag g l t)

(flag p l b)

(flag p l c)

(flag p l t)

(flag c b)

(flag c)

(flag l b)

(flag l t) (flag r t)

(flag r b)

(flag c t)

(flag p r t)

(flag p r c)

(flag p r b)

(goal r)

(flag g r t)

(flag g r b)

(line l)

(line t)

(line r)

(line b)

(flag r 0)

(flag r t 10)

(flag r t 20)

(flag r t 30)

(flag r b 10)

(flag r b 20)

(flag r b 30)

(flag t l 50)

(flag t l 40)

(flag t l 30)

(flag t l 20)

(flag t l 10) (flag t r 10)

(flag t r 20)

(flag t r 30)

(flag t r 40)

(flag t r 50)(flag t 0)

Physical boundary

Figure 4.2.: The
ags and lines in the simulation.

of the �eld. (f g l b) is a virtual
ag marking the right goalpost on the left goal. The

remaining types of
ags are all located 5 meters outside the playing �eld. For example,

(f t l 20) is 5 meters from the top sideline and 20 meters left from the center line. In

the same way, (f r b 10) is 5 meters right of the right sideline and 10 meters below the

center of the right goal. Also, (f b 0) is 5 meters below the midpoint of the bottom

sideline.

In the case of (l ...), Distance is the distance to the point where the center line of

the player's view crosses the line, and Direction is the direction of the line.

Range of View

The visible sector of a player is dependant on several factors. First of all we have the

server parameters sense step and visible angle which determines the basic time step

between visual information and how many degrees the player's normal view cone is. The

current default values are 150 milli-seconds and 90 degrees.

The player can also in
uence the frequency and quality of the information by chang-

ing ViewWidth and ViewQuality.

29

4. Soccer Server

To calculate the current view frequency and view angle of the agent use equations

4.13 and 4.14.

view frequency = sense step � view quality factor � view width factor (4.13)

where view quality factor is 1 i� ViewQuality is high and 0.5 i� ViewQuality is

low; view width factor is 2 i� ViewWidth is narrow, 1 i� ViewWidth is normal,

and 0.5 i� ViewWidth is wide.

view angle = visible angle � view width factor (4.14)

where view width factor is 0.5 i� ViewWidth is narrow, 1 i� ViewWidth is nor-

mal, and 2 i� ViewWidth is wide.

The player can also \see" an object if it's within visible distance meters of the

player. If the objects is within this distance but not in the view cone then the player

can know only the type of the object (ball, player, goal or
ag), but not the exact name

of the object. Moreover, in this case, the capitalized name, that is \B", \P", \G" and

\F", is used as the name of the object rather than \b", \p", \g" and \f".

The following example and Fig. 4.3 are taken from [17].

The meaning of the view angle parameter is illustrated in Fig. 4.3. In this �gure,

the viewing agent is the one shown as two semi-circles. The light semi-circle is its front.

The black circles represent objects in the world. Only objects within view angleÆ/2,

and those within visible distance of the viewing agent can be seen. Thus, objects b

and g are not visible; all of the rest are.

As object f is directly in front of the viewing agent, its angle would be reported as 0

degrees. Object e would be reported as being roughly -40Æ, while object d is at roughly

20Æ.

Also illustrated in Fig. 4.3, the amount of information describing a player varies

with how far away the player is. For nearby players, both the team and the uniform

number of the player are reported. However, as distance increases, �rst the likelihood

that the uniform number is visible decreases, and then even the team name may not be

visible. It is assumed in the server that unum far length � unum too far length �

team far length � team too far length. Let the player's distance be dist. Then

� If dist � unum far length, then both uniform number and team name are visible.

� If unum far length < dist < unum too far length, then the team name is

always visible, but the probability that the uniform number is visible decreases

linearly from 1 to 0 as dist increases.

� If dist � unum too far length, then the uniform number is not visible.

� If dist � team far length, then the team name is visible.

� If team far length < dist < team too far length, then the probability that

the team name is visible decreases linearly from 1 to 0 as dist increases.

30

4.3. Sensor Models

d

b
e

ca
g

f

field_length

field_width

visible_distance

view_angle

unum_far_length

unum_too_far_length
team_far_length

team_too_far_length

Client whose vision perspective is being illustrated

Figure 4.3.: The visible range of an individual agent in the soccer server. The view-

ing agent is the one shown as two semi-circles. The light semi-circle is its

front. The black circles represent objects in the world. Only objects within

view angleÆ/2, and those within visible distance of the viewing agent can

be seen. unum far length, unum too far length, team far length,

and team too far length a�ect the amount of precision with which a play-

ers' identity is given. Taken from [17].

31

4. Soccer Server

� If dist � team too far length, then the team name is not visible.

For example, in Fig. 4.3, assume that all of the labeled circles are players. Then

player c would be identi�ed by both team name and uniform number; player d by team

name, and with about a 50% chance, uniform number; player e with about a 25% chance,

just by team name, otherwise with neither; and player f would be identi�ed simply as

an anonymous player.

Parameter in server.conf Value

sense step 150

visible angle 90.0

visible distance 3.0

unum far lengtha 20.0

unum too far lengtha 40.0

team far lengtha 40.0

team too far lengtha 60.0

quantize step 0.1

quantize step l 0.01

aNot in server.conf, but compiled into the server

Table 4.2.: Parameters for the visual sensors

Visual Sensor Noise Model

In order to introduce noise in the visual sensor data the values sent from the server is

quantized. For example, the distance value of the object, in the case where the object

in sight is a ball or a player, is quantized in the following manner:

d0 = Quantize(exp(Quantize(log(d);quantize step)); 0:1) (4.15)

where d and d0 are the exact distance and quantized distance respectively, and

Quantize(V;Q) = ceiling(V=Q) �Q (4.16)

This means that players can not know the exact positions of very far objects. For

example, when distance is about 100.0 the maximum noise is about 10.0, while when

distance is less than 10.0 the noise is less than 1.0.

In the case of
ags and lines, the distance value is quantized in the following manner.

d0 = Quantize(exp(Quantize(log(d);quantize step l)); 0:1) (4.17)

32

4.3. Sensor Models

4.3.3. Body Sensor Model

The body sensor reports the current \physical" status of the player. The information is

automatically sent to the player every sense body step, currently 100, milli-seconds.

The format of the body sensor message is:

(sense body Time

(view mode ViewQuality ViewWidth)

(stamina Stamina E�ort)

(speed AmountOfSpeed DirectionOfSpeed)

(head angle HeadDirection)

(kick KickCount)

(dash DashCount)

(turn TurnCount)

(say SayCount)

(turn neck TurnNeckCount)

(catch CatchCount)

(move MoveCount)

(change view ChangeViewCount))

ViewQuality is one of high and low.

ViewWidth is one of narrow, normal, and wide.

AmountOfSpeed is an approximation of the amount of the player's speed.

DirectionOfSpeed is an approximation of the direction of the player's speed.

HeadDirection is the relative direction of the player's head.

The Count variables are the total number of commands of that type executed by

the server. For example DashCount = 134 means that the player has executed 134

dash commands so far.

The semantics of the parameters are described where they are actually used. The

ViewQuality and ViewWidth parameters are for example described in the Section 4.3.2.

The server parameters that a�ects the body sensor are described in Tab. 4.3.

Parameter in server.conf Value

sense body step 100

Table 4.3.: Parameters for the body sensor

33

4. Soccer Server

4.4. Movement Model

In each simulation step, movement of each object is calculated as following manner:

(ut+1
x

; ut+1
y

) = (vt
x
; vt

y
) + (at

x
; at

y
): accelerate (4.18)

(pt+1
x

; pt+1
y

) = (pt
x
; pt

y
) + (ut+1

x
; ut+1

y
): move

(vt+1
x

; vt+1
y

) = decay� (ut+1
x

; ut+1
y

): decay speed

(at+1
x

; at+1
y

) = (0; 0): reset acceleration

where, (pt
x
; pt

y
), and (vt

x
; vt

y
) are respectively position and velocity of the object in

timestep t. decay is a decay parameter speci�ed by ball decay or player decay.

(atx; a
t
y
) is acceleration of object, which is derived from Power parameter in dash (in the

case the object is a player) or kick (in the case of a ball) commands in the following

manner:

(atx; a
t

y) = Power � power rate� (cos(�t); sin(�t))

where �t is the direction of the object in timestep t and power rate is dash power rate

or is calculated from kick power rate as described in Sec. 4.5.3. In the case of a player,

this is just the direction the player is facing. In the case of a ball, its direction is given

as the following manner:

�tball = �tkicker +Direction

where �tball and �
t

kicker are directions of ball and kicking player respectively, andDirection

is the second parameter of a kick command.

4.4.1. Movement Noise Model

In order to re
ect unexpected movements of objects in real world, � adds noise to the

movement of objects and parameters of commands.

Concerned with movements, noise is added into Eqn. 4.18 as follows:

(ut+1x ; ut+1y) = (vtx; v
t

y) + (atx; a
t

y) + (~rrmax; ~rrmax)

where ~rmax is a random number whose distribution is uniform over the range [�rmax; rmax].

rmax is a parameter that depends on amount of velocity of the object as follows:

rmax = rand � j(vt
x
; vt

y
)j

where rand is a parameter speci�ed by player rand or ball rand.

Noise is added also into the Power and Moment arguments of a command as follows:

argument = (1 + ~rrand) � argument

34

4.5. Action Models

4.4.2. Collision Model

If at the end of the simulation cycle, two objects overlap, then the objects are moved

back until they do not overlap. Then the velocities are multiplied by -0.1. Note that it

is possible for the ball to go through a player as long as the ball and the player never

overlap at the end of the cycle.

4.5. Action Models

4.5.1. Catch Model

The goalie is the only player with the ability to catch a ball. The goalie can catch the

ball in play mode `play on' in any direction, if the ball is within the catchable area and

the goalie is inside the penalty area. If the goalie catches into direction ', the catchable

area is a rectangular area of length catchable area l and width catchable area w in

direction ' (see Fig. 4.4). The ball will be caught with probability catch probability,

if it is inside this area (and it will not be caught if it is outside this area). For the current

values of catch command parameters see Tab. 4.4.

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����

���
���
���

���
���
�����

����
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

������������

ca
tc

hab
le_

ar
ea

_l

45° catch angle

catchable_area_w

Figure 4.4.: Catchable area of the goalie when doing a catch 45

If a catch command was unsuccessful, it takes catch ban cycle cycles until an-

other catch command can be used (catch commands during this time have simply

no e�ect). If the goalie succeeded in catching the ball, the play mode will change to

`goalie catch ball [l|r]' �rst and `free kick [l|r]', after that during the same cy-

cle. Once the goalie caught the ball, it can use themove command to move with the ball

inside the penalty area. The goalie can use the move command goalie max moves

times before it kicks the ball. Additional move commands do not have any e�ect and

35

4. Soccer Server

the server will respond with (error too many moves). Please note that catching the

ball, moving around, kicking the ball a short distance and immediately catching it again

to move more than goalie max moves times is considered as ungentlemanly play.

Parameter in server.conf Value

catchable area l 2.0

catchable area w 1.0

catch probability 1.0

catch ban cycle 5

goalie max moves 2

Table 4.4.: Parameters for the goalie catch command

4.5.2. Dash Model (incl. stamina model)

Dash Model

The dash command is used to accelerate the player in direction of its body. dash takes

the acceleration power as a parameter. The valid range for the acceleration power can be

con�gured in server.conf, the respective parameters are minpower and maxpower.

For the current values of parameters for the dash model, see Tab. 4.5.

Each player has a certain amount of stamina that will be consumed by dash com-

mands. At the beginning of each half, the stamina of a player is set to stamina max.

If a player accelerates forward (power > 0), stamina is reduced by power. Accelerat-

ing backwards (power < 0) is more expensive for the player: stamina is reduced by

�2 � power. If the player's stamina is lower than the power needed for the dash, power

is reduced so that the dash command does not need more stamina than available. Het-

erogeneous players will use some extra stamina every time the available power is lower

than the needed stamina. The amount of extra stamina depends on the player type and

the parameters extra stamina delta min and extra stamina delta max.

After reducing the stamina, the server calculates the e�ective dash power for the

dash command. The e�ective dash power edp depends on the dash power rate and

the current e�ort of the player. The e�ort of a player is a value between e�ort min

and e�ort max; it is dependent on the stamina management of the player (see below).

edp = e�ort � dash power rate � power (4.19)

edp and the players current body direction are tranformed into vector and added

to the players current acceleration vector ~an (usually, that should be 0 before, since a

player cannot dash more than once a cycle and a player does not get accelerated by

other means than dashing1).

At the transition from simulation step n to simulation step n+ 1, acceleration ~an is

applied:
1is that so?

36

4.5. Action Models

1. ~an is normalized to a maximum length of player accel max.

2. ~an is added to current players speed ~vn. ~vn will be normalized to a maximum

length of player speed max. For heterogeneous players, the maximum speed

is a value between player speed max + player speed max delta min and

player speed max + player speed max delta max in player.conf.

3. Noise ~n and wind ~w will be added to ~vn. Both noise and wind are con�gurable in

server.conf. Parameters responsible for the wind are wind force, wind dir and

wind rand. With the current settings, there is no wind on the simulated soccer

�eld. The responsible parameter for the noise is player rand. Both direction

and length of the noise vector are within the interval [�j~vnj � player rand : : : j~vnj �

player rand].

4. The new position of the player ~pn+1 is the old position ~pn plus the velocity vector

~vn (i.e. the maximum distance di�erence for the player between two simulation

steps is player speed max).

5. player decay is applied for the velocity of the player: ~vn+1 = ~vn � player decay.

Acceleration ~an+1 is set to zero.

Stamina Model

For the stamina of a player, there are three important variables: the stamina value,

recovery and e�ort. stamina is decreased when dashing and gets replenished slightly

each cycle. recovery is responsible for how much the stamina recovers each cycle, and

the e�ort says how e�ective dashing is (see section above). Important parameters for

the stamina model are changeable in the �les server.conf and player.conf, see also

Tab. 4.5. Basically, the algorithm shown in Fig. 4.5 says that every simulation step

the stamina is below some threshold, e�ort or recovery are reduced until a minimum is

reached. Every step the stamina of the player is above some threshold, e�ort is increased

up to a maximum. The recovery value is only reset to 1.0 each half, but it will not be

increased during a game.

4.5.3. Kick Model

There are no principal changes to the kick model from soccer server version 6 to soccer

server version 7, so your old implementation should still work. However, due to changes

in the server parameter �le, in some cases multiple kicks are not necessary anymore.

The kick command takes two parameters, the kick power the player client wants to

use (between minpower and maxpower) and the angle the player kicks the ball to.

The angle is given in degrees and has to be between minmoment and maxmoment

(see Tab. 4.6 for current parameter values).

Once the kick command arrived at the server, the kick will be executed if the ball

is kick-able for the player and the player is not marked o�side. The ball is kick-able

37

4. Soccer Server

Basic Parameters Parameters for heterogeneous Players

server.conf player.conf

Name Value Name Value Range

minpower -100

maxpower 100

stamina max 4000

stamina inc max 45 stamina inc max delta factor -100.0

player speed max delta min 0.0
25

player speed max delta max 0.2
| 45

extra staminaa 0.0 extra stamina delta min 0.0 0.0

extra stamina delta max 100.0 | 100.0

dash power rate 0.006 dash power rate delta min 0.0 0.006

dash power rate delta max 0.002 | 0.008

e�ort min 0.6 e�ort min delta factor -0.002

extra stamina delta min 0.0
0.4

extra stamina delta max 100.0
| 0.6

e�ort maxa 1.0 e�ort max delta factor -0.002

extra stamina delta min 0.0
0.8

extra stamina delta max 100.0
| 1.0

e�ort dec thr 0.3

e�ort dec 0.005

e�ort inc thr 0.6

e�ort inc 0.01

recover dec thr 0.3

recover dec 0.002

recover min 0.5

player accel max 1.0

player speed max 1.0 player speed max delta min 0.0 1.0

player speed max delta max 0.2 | 1.2

player rand 0.1

wind force 0.0

wind dir 0.0

wind rand 0.0

player decay 0.4 player decay delta min 0.0 0.4

player decay delta max 0.2 | 0.6

aNot in server.conf, but compiled into the server

Table 4.5.: Dash and Stamina Model Parameters for Soccer Server 7

38

4.5. Action Models

fif stamina is below recovery decrement threshold, recovery is reducedg

if stamina � recover dec thr � stamina max then

if recovery > recover min then

recovery recovery � recover dec

end if

end if

fif stamina is below e�ort decrement threshold, e�ort is reducedg

if stamina � e�ort dec thr � stamina max then

if e�ort > e�ort min then

e�ort e�ort � e�ort dec

end if

e�ort max(e�ort, e�ort min)

end if

fif stamina is above e�ort increment threshold, e�ort is increasedg

if stamina � e�ort inc thr � stamina max then

if e�ort < e�ort max then

e�ort e�ort + e�ort inc

e�ort min(e�ort, e�ort max)

end if

end if

frecover the stamina a bitg

stamina stamina + recovery � stamina inc max

stamina min(stamina, stamina max)

Figure 4.5.: The stamina model algorithm

39

4. Soccer Server

for the player, if the distance between the player and the ball is between 0 and kick-

able margin. Heterogeneous players can have di�erent kickable margins. For the cal-

culation of the distance during this section, it is important to know that if we talk of

distance between player and ball, we talk about the minimal distance between the outer

shape of both player and ball. So the distance in this section is the distance between

the center of both objects minus the radius of the ball minus the radius of the player.

The �rst thing to be calculated for the kick is the e�ective kick power ep:

ep = kick power � kick power rate (4.20)

If the ball is not directly in front of the player, the e�ective kick power will be reduced

by a certain amount dependent on the position of the ball with respect to the player.

Both angle and distance are important.

If the relative angle of the ball is 0° wrt. the body direction of the player client |

i.e. the ball is in front of the player | the e�ective power will stay as it is. The larger

the angle gets, the more the e�ective power will be reduced. The worst case is if the ball

is lying behind the player (angle 180°): the e�ective power is reduced by 25%.

The second important variable for the e�ective kick power is the distance from the

ball to the player: it is quite obvious that { should the kick be executed { the distance

between ball and player is between 0 and kickable margin. If the distance is 0, the

e�ective kick power will not be reduced again. The further the ball is away from the

player client, the more the e�ective kick power will be reduced. If the ball distance is

kickable margin, the e�ective kick power will be reduced by 25% of the original kick

power.

The overall worst case for kicking the ball is if a player kicks a distant ball behind

itself: 50% of kick power will be used. For the e�ective kick power, we get the formula

4.21. (dir di� means the absolute direction di�erence between ball and the player's body

direction, dist di� means the absolute distance between ball and player.)

0 � dir di� � 180Æ ^ 0 � dist di� � kickable margin:

ep = ep �

�
1� 0:25 �

dir di�

180Æ
� 0:25 �

dist ball

kickable margin

�
(4.21)

The e�ective kick power is used to calculate ~ani
, an acceleration vector that will be

added to the global ball acceleration ~an during cycle n (remember that we have a multi

agent system and each player close to the ball can kick it during the same cycle).

There is a server parameter, kick rand, that can be used to generate some noise

to the ball acceleration. For the default players, kick rand is 0 and no noise will be

generated. For heterogeneous players, kick rand depends on kick rand delta factor

in player.conf and on the actual kickable margin. In RoboCup 2000, kick rand was

used to generate some noise during evaluation round for the normal players.

During the transition from simulation step n to simulation step n + 1 acceleration

~an is applied:

1. ~an is normalized to a maximum length of baccel max. Currently (Server 7), the

maximum acceleration is equal to the maximum e�ective kick power.

40

4.5. Action Models

2. ~an is added to the current ball speed ~vn. ~vn will be normalized to a maximum

length of ball speed max.

3. Noise ~n and wind ~w will be added to ~vn. Both noise and wind are con�gurable in

server.conf. Parameters responsible for the wind are wind force, wind dir and

wind rand. The responsible parameter for the noise is ball rand. Both direction

and length of the noise vector are within the interval [�j~vnj � ball rand : : : j~vnj �

ball rand].

4. The new position of the ball ~pn+1 is the old position ~pn plus the velocity vector ~vn
(i.e. the maximum distance di�erence for the ball between two simulation steps is

ball speed max).

5. ball decay is applied for the velocity of the ball: ~vn+1 = ~vn � ball decay. Acceler-

ation ~an+1 is set to zero.

With the current settings the ball covers a distance up to 45, assuming an optimal

kick. 53 cycles after an optimal kick, the distance from the kick o� position to the ball

is about 43, the remaining velocity is smaller than 0:1. 15 cycles after an optimal kick,

the ball covers a distance of 27 { 28 and the remaining veloctity is slightly larger than

1.

Implications from the kick model and the current parameter settings are that it still

might be helpful to use several small kicks for a compound kick { for example stopping

the ball, kick it to a more advantageous position within the kickable area and kick it to

the desired direction. It would be another possibility to accelerate the ball to maximum

speed without putting it to relative position (0,0°) using a compound kick.

4.5.4. Move Model

The move command can be used to place a player directly onto a desired position on

the �eld. move exists to set up the team and does not work during normal play. It is

available at the beginning of each half (play mode `before kick off') and after a goal

has been scored (play modes `goal r n ' or `goal l n '). In these situations, players can

be placed on any position in their own half (i.e. X < 0) and can be moved any number

of times, as long as the play mode does not change. Players moved to a position on the

opponent half will be set to a random position on their own side by the server.

A second purpose of the move command is to move the goalie within the penalty

area after the goalie caught the ball (see also Sec. 4.5.1). If the goalie caught the ball, it

can move together with the ball within the penalty area. The goalie is allowed to move

goalie max moves times before it kicks the ball. Additional move commands do not

have any e�ect and the server will respond with (error too many moves).

4.5.5. Say Model

Using the say command, players can broadcast messages to other players. Messages

can be say msg size characters long, where valid characters for say messages are from

41

4. Soccer Server

Basic Parameters Parameters for heterogeneous Players

server.conf player.conf

Name Value Name Value Range

minpower -100

maxpower 100

minmoment -180

maxmoment 180

kickable margin 0.7 kickable margin delta min 0.0 0.7

kickable margin delta max 0.2 | 0.9

kick power rate 0.027

kick rand 0.0 kick rand delta factor 0.5

kickable margin delta min 0.0
0.0

kickable margin delta max 0.2
| 0.1

ball size 0.085

ball decay 0.94

ball rand 0.05

ball speed max 2.7

ball accel max 2.7

wind force 0.0

wind dir 0.0

wind rand 0.0

Table 4.6.: Ball and Kick Model Parameters

Parameter in server.conf Value

goalie max moves 2

Table 4.7.: Parameter for the move command

42

4.5. Action Models

the set [-0-9a-zA-Z ().+*/?<>] (without the square brackets). Messages players say

can be heard within a distance of audio cut dist by members of both teams (see also

Sec. 4.3.1). Say messages sent to the server will be sent back to players within that

distance immediately. The use of the say command is only restricted by the limited

capacity of the players of hearing messages.

Parameter in server.conf Value

say msg size 512

audio cut dist 50

hear max 2

hear inc 1

hear decay 2

Table 4.8.: Parameters for the say command

4.5.6. Turn Model

While dash is used to accelerate the player in direction of its body, the turn command

is used to change the players body direction. The argument for the turn command is

the moment; valid values for the moment are between minmoment andmaxmoment.

If the player does not move, the moment is equal to the angle the player will turn.

However, there is a concept of inertia that makes it more diÆcult to turn when you are

moving. Speci�cally, the actual angle the player is turned is as follows:

actual angle = moment=(1:0 + inertia moment � player speed) (4.22)

inertia moment is a server.conf parameter with default value 5:0. Therefore

(with default values), when the player is at speed 1:0, the maximum e�ective turn

he can do is �30. However, notice that because you can not dash and turn dur-

ing the same cycle, the fastest that a player can be going when executing a turn is

player speed max � player decay, which means the e�ective turn for a default player

(with default values) is �60.

For heterogeneous players, the inertia moment is the default inertia value plus a

value between min. player decay delta min � inertia moment delta factor and

max. player decay delta max � inertia moment delta factor.

4.5.7. TurnNeck Model

With turn neck, a player can turn its neck somewhat independently of its body. The

angle of the head of the player is the viewing angle of the player. The turn command

changes the angle of the body of the player while turn neck changes the neck angle

of the player relative to its body. The minimum and maximum relative angle for the

player's neck are given byminmoment andmaxmoment in server.conf. Remember

43

4. Soccer Server

Basic Parameters Parameters for heterogeneous Players

server.conf player.conf

Name Value Name Value Range

minmoment -180

maxmoment 180

inertia moment 5.0 player decay delta min 0.0

player decay delta max 0.2
5.0

inertia moment delta factor 25.0
10.0

Table 4.9.: Turn Model Parameters

that the neck angle is relative to the body of the player so if the client issues a turn

command, the viewing angle changes even if no turn neck command was issued.

Also, turn neck commands can be executed during the same cycle as turn, dash,

and kick commands. turn neck is not a�ected by momentum like turn is. The argu-

ment for a turn neck command must be in the range between minneckmoment and

maxneckmoment.

Parameter in server.conf Value

minneckang -90

maxneckang 90

minneckmoment -180

maxneckmoment 180

Table 4.10.: Parameter for the turn neck command

4.6. Heterogeneous Players

With Soccer Server 7, heterogeneous players were introduced. For heterogeneous players,

Soccer Server generates player types random player types at startup. The player types

have di�erent abilities based on the tradeo�s de�ned in the player.conf �le. Both teams

of a match use the same player types. Type 0 is the default type and always the same.

When the players connect to the server, the receive information on the available

player types (see Sec. 4.2.1). The online coach can change player types unlimited times

in `before kick off' mode and change player types subs max times during other non-

`play on' play modes using the change player type . . . command (see Sec. 7.4).

Each time a player is substituted by some other player type, its stamina, recovery

and e�ort is reset to the initial (maximum) value of the respective player type.

44

4.7. Referee Model

Parameter in player.conf Value

player types 7

subs max 3

Table 4.11.: Parameter for substitutions and heterogeneous player types

4.7. Referee Model

The Automated Referee sends messages to the players, so that players know the actual

play mode of the game. The rules and the behavior for the automated referee are

described in Sec. 2.2.1. Players receive the referee messages as hear messages. A player

can hear referee messages in every situation independent of the number of messages the

player heard from other players.

4.7.1. Play Modes and referee messages

The change of the play mode is announced by the referee. Additionally, there are some

referee messages announcing events like a goal or a foul. If you have a look into the

server source code, you will notice some additional play modes that are currently not

used. Both play modes and referee messages are announced using (referee String),

where String is the respective play mode or message string. The play modes are listed

in Tab. 4.12, for the messages see Tab. 4.13.

Play Mode tc subsequent play mode comment

`before kick off' 0 `kick off Side ' at the beginning of a half

`play on' during normal play

`time over'

`kick off Side ' announce start of play

(after pressing the Kick Off button)

`kick in Side '

`free kick Side '

`corner kick Side '

`goal kick Side ' `play on' play mode changes once

the ball leaves the penalty area

`goal Side ' currently unused

(but see Tab. 4.13).

`drop ball' 0 `play on'

`offside Side ' 30 `free kick Side ' for the opposite side

where Side is either the character `l' or `r', OSide means opponent's side.

tc is the time (in number of cycles) until the subsequent play mode will be announced

Table 4.12.: Play Modes

45

4. Soccer Server

Message tc subsequent play mode comment

goal Side n 50 `kick off OSide ' announce the nth goal for a team
foul Side 0 `free kick OSide ' announce a foul
goalie catch ball Side 0 `free kick OSide '
time up without a team 0 `time over' sent if there was no opponent until

the end of the second half
time up 0 `time over' sent once the game is over

(if the time is � second half and
the scores for each team are di�erent)

half time 0 `before kick off'
time extended 0 `before kick off'

where Side is either the character `l' or `r', OSide means opponent's side.
tc is the time (in number of cycles) until the subsequent play mode will be announced

Table 4.13.: Referee Messages

4.8. The Soccer Simulation

In Sec. 4.4, we gave a description on how the objects are moved with respect to their ac-

celerations and velocities. In this section, we describe at what point in time acceleration

and velocities are applied to the objects during the simulation.

4.8.1. Description of the simulation algorithm

In Soccer Server, time is updated in discrete steps. A simulation step is 100ms. During

each simulation step, objects (i.e. players and the ball) stay on their positions. If

players decide to act within a step, actions are applied to the players and the ball at the

transition from one simulation cycle to the next. Depending on the play mode, not all

actions are allowed for the players (for instance in `before kick off' mode, players can

turn and move, but they cannot dash), so only allowed actions will be applied and

take e�ect.

If during a step, several players kick the ball, all the kicks are applied to the ball

and a resulting acceleration is calculated. If the resulting acceleration is larger than the

maximum acceleration for the ball, acceleration is normalized to its maximum value.

After moving the objects, the server checks for collisions and updates velocities if a

collision occurred (see also Sec. 4.4.2).

When applying accelerations and velocities to the objects, the order of application is

randomized. After changing objects positions, and updating velocities and accelerations,

the automated referee checks the situation and changes the play mode or the object

positions, if necessary. Changes to the play mode are announced immediately. Finally,

stamina for each player is updated.

46

4.9. Using Soccerserver

4.9. Using Soccerserver

4.9.1. The Soccerserver Parameters

Table 4.14.: Parameters adjustable in server.conf

Default Current Value

Name Value in server.conf Description

goal width 7.32 14.02 goal width

player size 0.3 player size

player decay 0.4 player decay

player rand 0.1

player weight 60.0 player weight

player speed max 1.0 max. player velocity

player accel max 1.0 max. player acceleration

stamina max 4000.0 max. player stamina

stamina inc max 45.0 max. player stamina increment

recover dec thr 0.3 player recovery decrement

threshold

recover min 0.5 min. player recovery

recover dec 0.002 player recovery decrement

e�ort dec thr 0.3 player dash e�ort

decrement threshold

e�ort min 0.6 min. player dash e�ort

e�ort dec 0.005 dash e�ort decrement

e�ort inc thr 0.6 dash e�ort increment treshold

e�ort inc 0.01 dash e�ort increment

kick rand 0.0 noise added directly to kicks

team actuator noise
ag whether to use team

speci�c actuator noise

prand factor l factor to multiply prand

for left team

prand factor r factor to multiply prand

for right team

kick rand factor l factor to multiply

kick rand for left team

kick rand factor r factor to multiply

kick rand for right team

ball size 0.085 ball size

ball decay 0.94 ball decay

ball rand 0.05

ball weight 0.2 weight of the ball

ball speed max 2.7 max. ball velocity

ball accel max 2.7 max. ball acceleration

dash power rate 0.006 dash power rate

kick power rate 0.027 kick power rate

kickable margin 0.7 kickable margin

control radius control radius

catch probability 1.0 goalie catch probability

catchable area l 2.0 goalie catchable area length

catchable area w 1.0 goalie catchable area width

goalie max moves 2 goalie max. moves after a catch

maxpower 100 max power

47

4. Soccer Server

Table 4.14.: (continued)

Default Current Value

Name Value in server.conf Description

minpower -100 min power

maxmoment 180 max. moment

minmoment -180 min. moment

maxneckmoment 180 max. neck moment

minneckmoment -180 min. neck moment

maxneckang 90 max. neck angle

minneckang -90 min. neck angle

visible angle 90.0 visible angle

visible distance visible distance

audio cut dist 50.0 audio cut o� distance

quantize step 0.1 quantize step of distance

for movable objects

quantize step l 0.01 quantize step of distance

for landmarks

quantize step dir

quantize step dist team l

quantize step dist team r

quantize step dist l team l

quantize step dist l team r

quantize step dir team l

quantize step dir team r

ckick margin 1.0 corner kick margin

wind dir 0.0 0.0 wind direction

wind force 10.0 0.0

wind rand 0.3 0.0

wind none wind factor is none

wind random false wind factor is random

inertia moment 5.0 intertia moment for turn

half time 300 length of a half time in seconds

drop ball time 200 number of cycles to wait until

dropping the ball automatically

port 6000 player port number

coach port 6001 (o�ine) coach port

olcoach port online coach port

say coach cnt max 128 upper limit of the number of online

coach's message

say coach msg size 128 upper limit of length of online

coach's message

simulator step 100 time step of simulation [unit:msec]

send step 150 time step of visual

information [unit:msec]

recv step 10 time step of acception of

commands [unit: msec]

sense body step 100

say msg size 512 string size of say message [unit:byte]

clang win size 300 time window which controls

how many messages can be

sent (coach language)

clang de�ne win 1 number of messages per window

clang meta win 1

48

4.9. Using Soccerserver

Table 4.14.: (continued)

Default Current Value

Name Value in server.conf Description

clang advice win 1

clang info win 1

clang mess delay 50 delay between receipt of message

and send to players

clang mess per cycle 1 maximum number of coach messages

sent per cycle

hear max 2

hear inc 1

hear decay 2

catch ban cycle 5

coach

coach w referee

old coach hear

send vi step 100 interval of online coach's look

use o�side on
ag for using o� side rule

o�side active area size 5 o�side active area size

forbid kick o� o�side on forbid kick o� o�side

log �le

record

record version 3
ag for record log

record log on
ag for record client command log

record messages

send log on
ag for send client command log

log times o�
ag for writing cycle lenth

to log �le

verbose o�
ag for verbose mode

replay

o�side kick margin 9.15 o�side kick margin

slow down factor

start goal l

start goal r

fullstate l

fullstate r

49

4. Soccer Server

50

5. The Soccer Monitor

5.1. Introduction

Soccermonitor provides a visual interface. Using the monitor we can watch a game

vividly and control the proceeding of the game. By cooperating with logplayer, soc-

cermonitor can replay games, so that it becomes very convenient to analyze and debug

clients.

5.2. Getting started

To connect the soccermonitor with the soccerserver, you can use the command following:

-> cd monitor

-> soccermonitor -f ConfFileName [-ParameterName Value]*

By specifying the arguments, you can modify the parameters of soccermonitor (See 5.5

Settings and Parameters) instead of modifying monitor con�guration �le.

If you use script \sserver" to start soccerserver, a monitor will be automatically

started and connected with the server:

-> sserver

5.3. Soccermonitor Communication

Soccermonitor and soccerserver are connected via UDP/IP on port 6000 (default).

5.3.1. Information From Server to Monitor

When the server is connected with the monitor , it will send information to the monitor

every cycle. Soccerserver 7.xx provides two di�erent formats information (version 1 and

version 2).The server will decide which format be used according to the initial command

sent by the monitor. (See 5.3.2 Commands From Monitor to Server)

Version 1

Soccerserver and logplayer send dispinfo t structs to the soccermonitor. Dispinfo t con-

tains a union with three di�erent types of information:

51

5. The Soccer Monitor

� showinfo t: information needed to draw the scene

� msginfo t : contains the messages from the players and the referee shown in the

bottom windows

� drawinfo t: information for monitor to draw circles, lines or points (not used by

the server)

The size of dispinfo t is determined by its largest subpart (msg) and is 2052 bytes (the

union causes some extra network load and may be changed in future versions). In order

to keep compatibility between di�erent platforms, values in dispinfo t are represented

by network byte order.

Following is a description of these structs and the ones contained:

showinfo_t:

typedef struct {

short enable ;

short side ;

short unum ;

short angle ;

short x ;

short y ;

} pos_t ;

Values of the elements can be

� enable:

state of the object. Players not on the �eld (and the ball) have state DISABLE.

The other bits of enable allow monitors to draw the state and action of a player

more detailed (server/types.h).

DISABLE (0x00)

STAND (0x01)

KICK (0x02)

KICK_FAULT (0x04)

GOALIE (0x08)

CATCH (0x10)

CATCH_FAULT (0x20)

� side:

side the player is playing on. LEFT means from left to right, NEUTRAL is the

ball (server/types.h).

LEFT 1

NEUTRAL 0

RIGHT -1

52

5.3. Soccermonitor Communication

� unum:

uniform number of a player ranging from 1 to 11

� angle:

angle the agent is facing ranging from -180 to 180 degrees, where -180 is view to

the left side of the screen, -90 to the top, 0 to the right and 90 to the bottom.

� x, y:

position of the player on the screen. (0, 0) is the midpoint of the �eld, x in-

creases to the right, y to the bottom of the screen. Values are multiplied by

SHOWINFO SCALE (16) to reduce aliasing, so �eld size is PITCH LENGTH *

SHOWINFO SCALE in x direction and PITCH WIDTH * SHOWINFO SCALE

in y direction.

typedef struct {

char name[16]; /* name of the team */

short score; /* current score of the team */

} team_t ;

typedef struct {

char pmode ;

team_t team[2] ;

pos_t pos[MAX_PLAYER * 2 + 1] ;

short time ;

} showinfo_t ;

A showinfo t struct is passed every cycle (100 ms) to the monitor and contains the

state and positions of players and the ball.

values of the elements can be

� pmode:

currently active playmode of the game (server/types.h)

PM_Null,

PM_BeforeKickOff,

PM_TimeOver,

PM_PlayOn,

PM_KickOff_Left,

PM_KickOff_Right,

PM_KickIn_Left,

PM_KickIn_Right,

PM_FreeKick_Left,

PM_FreeKick_Right,

PM_CornerKick_Left,

53

5. The Soccer Monitor

PM_CornerKick_Right,

PM_GoalKick_Left,

PM_GoalKick_Right,

PM_AfterGoal_Left,

PM_AfterGoal_Right,

PM_Drop_Ball,

PM_OffSide_Left,

PM_OffSide_Right,

PM_MAX

� team:

structs containing the teams (see above). Index 0 is for team playing from left to

right.

� pos:

position information of player (see above). Index 0 is the ball, indices 1 to 11 is

for team[0] (left to right) and 12 to 22 for team[1].

� time:

current time ranging from 1 to 12000 (in extra time)

� msginfo t:

typedef struct {

short board ;

char message[2048] ;

} msginfo_t ;

� board:

indicates the type of message. A message with type MSG BOARD is a message of

the referee for the left text window, LOG BOARD are messages from and to the

players. (server/param.h)

MSG_BOARD 1

LOG_BOARD 2

� message:

zero terminated string containing the message.

� drawinfo t:

allows the server to tell the monitor to draw simple graphics elements.

54

5.3. Soccermonitor Communication

typedef struct {

short x ;

short y ;

char color[COLOR_NAME_MAX] ;

} pointinfo_t ;

typedef struct {

short x ;

short y ;

short r ;

char color[COLOR_NAME_MAX] ;

} circleinfo_t ;

typedef struct {

short x1 ;

short y1 ;

short x2 ;

short y2 ;

char color[COLOR_NAME_MAX] ;

} lineinfo_t ;

typedef struct {

short mode ;

union {

pointinfo_t pinfo ;

circleinfo_t cinfo ;

lineinfo_t linfo ;

} object ;

} drawinfo_t ;

� mode:

determines the kind of message the union object contains (server/param.h)

DrawClear 0

DrawPoint 1

DrawCircle 2

DrawLine 3

� dispinfo t:

container for the di�erent messages from server to monitor.

typedef struct {

short mode ;

55

5. The Soccer Monitor

union {

showinfo_t show ;

msginfo_t msg ;

drawinfo_t draw ;

} body ;

} dispinfo_t ;

� mode:

determines the kind of message the union body contains. NO INFO indicates no

valid info contained (never sent by the server), BLANK MODE tells the monitor

to show a blank screen (used by logplayer) (server/param.h).

NO_INFO 0

SHOW_MODE 1

MSG_MODE 2

DRAW_MODE 3

BLANK_MODE 4

Version 2

Soccerserver and logplayer send dispinfo t2 structs to the soccermonitor instead of

dispinfo t structs which is used in version 1. Dispinfo t2 contains a union with �ve

di�erent types of information:

� showinfo t2: information needed to draw the scene

� msginfo t : contains the messages from the players and the referee shown in the

bottom windows

� player type t: information describes di�erent player's ability

� server params t: parameters and con�gurations of soccerserver

� player params t: parameters of player

Following is a description of these structs and the ones contained:

showinfo t2:

typedef struct {

short mode;

short type;

long x;

long y;

long deltax;

long deltay;

long body_angle;

56

5.3. Soccermonitor Communication

long head_angle;

long view_width;

short view_quality;

long stamina;

long effort;

long recovery;

short kick_count;

short dash_count;

short turn_count;

short say_count;

short tneck_count;

short catch_count;

short move_count;

short chg_view_count;

} player_t;

values of the elements can be

/***/

/********** NEEDS TO BE EXPANDED *********/

/***/

typedef struct {

long x;

long y;

long deltax;

long deltay;

} ball_t;

values of the elements can be

/***/

/********** NEEDS TO BE EXPANDED ********/

/***/

typedef struct {

char name[16]; /* name of the team */

short score; /* current score of the team */

} team_t ;

typedef struct {

char pmode ;

team_t team[2] ;

ball_t ball;

player_t pos[MAX_PLAYER * 2] ;

short time ;

57

5. The Soccer Monitor

} showinfo_t2 ;

A showinfo t2 struct is passed every cycle (100 ms) to the monitor and contains the

state and positions of players and the ball.

values of the elements can be

� pmode:

several new playmodes are added based on version 1 (server/types.h)

PM_Null,

PM_BeforeKickOff,

PM_TimeOver,

PM_PlayOn,

PM_KickOff_Left,

PM_KickOff_Right,

PM_KickIn_Left,

PM_KickIn_Right,

PM_FreeKick_Left,

PM_FreeKick_Right,

PM_CornerKick_Left,

PM_CornerKick_Right,

PM_GoalKick_Left,

PM_GoalKick_Right,

PM_AfterGoal_Left,

PM_AfterGoal_Right,

PM_Drop_Ball,

PM_OffSide_Left,

PM_OffSide_Right,

// added for 3D viewer/commentator/small league

PM_PK_Left,

PM_PK_Right,

PM_FirstHalfOver,

PM_Pause,

PM_Human,

PM_Foul_Charge_Left,

PM_Foul_Charge_Right,

PM_Foul_Push_Left,

PM_Foul_Push_Right,

PM_Foul_MultipleAttacker_Left,

PM_Foul_MultipleAttacker_Right,

PM_Foul_BallOut_Left,

PM_Foul_BallOut_Right,

PM_MAX

58

5.3. Soccermonitor Communication

� team:

structs containing the teams (see above). Index 0 is for team playing from left to

right.

� ball:

position information of ball (see above).

� pos:

position information of player (see above). Indices 0 to 10 is for team[0] (left to

right) and 11 to 21 for team[1].

� time:

current time ranging from 1 to 12000 (in extra time)

� msginfo t:

typedef struct {

short board ;

char message[2048] ; /* max_message_length_for_display */

} msginfo_t ;

� board:

indicates the type of message. A message with type MSG BOARD is a message of

the referee for the left text window, LOG BOARD are messages from and to the

players. (server/param.h)

MSG_BOARD 1

LOG_BOARD 2

� message:

zero terminated string containing the message.

typedef struct {

short id;

long player_speed_max;

long stamina_inc_max;

long player_decay;

long inertia_moment;

long dash_power_rate;

long player_size;

long kickable_margin;

long kick_rand;

long extra_stamina;

long effort_max;

59

5. The Soccer Monitor

long effort_min;

// spare variables which are to be used for paramenter added in the future

long sparelong1;

long sparelong2;

long sparelong3;

long sparelong4;

long sparelong5;

long sparelong6;

long sparelong7;

long sparelong8;

long sparelong9;

long sparelong10;

} player_type_t;

typedef struct

{

long gwidth ; /* goal width */

long inertia_moment ; /* intertia moment for turn */

long psize ; /* player size */

long pdecay ; /* player decay */

long prand ; /* player rand */

long pweight ; /* player weight */

long pspeed_max ; /* player speed max */

long paccel_max ; /* player acceleration max */

long stamina_max ; /* player stamina max */

long stamina_inc ; /* player stamina inc */

long recover_init ; /* player recovery init */

long recover_dthr ; /* player recovery decriment threshold */

long recover_min ; /* player recovery min */

long recover_dec ; /* player recovery decriment */

long effort_init ; /* player dash effort init */

long effort_dthr ; /* player dash effort decriment threshold */

long effort_min ; /* player dash effrot min */

long effort_dec ; /* player dash effort decriment */

long effort_ithr ; /* player dash effort incriment threshold */

long effort_inc ; /* player dash effort incriment */

long kick_rand; /* noise added directly to kicks */

short team_actuator_noise; /* flag whether to use team specific actuator noise

long prand_factor_l; /* factor to multiple prand for left team */

long prand_factor_r; /* factor to multiple prand for right team */

long kick_rand_factor_l; /* factor to multiple kick_rand for left team */

long kick_rand_factor_r; /* factor to multiple kick_rand for right team */

long bsize ; /* ball size */

60

5.3. Soccermonitor Communication

long bdecay ; /* ball decay */

long brand ; /* ball rand */

long bweight ; /* ball weight */

long bspeed_max ; /* ball speed max */

long baccel_max; /* ball acceleration max */

long dprate ; /* dash power rate */

long kprate ; /* kick power rate */

long kmargin ; /* kickable margin */

long ctlradius ; /* control radius */

long ctlradius_width ; /* (control radius) - (plyaer size) */

long maxp ; /* max power */

long minp ; /* min power */

long maxm ; /* max moment */

long minm ; /* min moment */

long maxnm ; /* max neck moment */

long minnm ; /* min neck moment */

long maxn ; /* max neck angle */

long minn ; /* min neck angle */

long visangle ; /* visible angle */

long visdist ; /* visible distance */

long windir ; /* wind direction */

long winforce ; /* wind force */

long winang ; /* wind angle for rand */

long winrand ; /* wind force for force */

long kickable_area ; /* kickable_area */

long catch_area_l ; /* goalie catchable area length */

long catch_area_w ; /* goalie catchable area width */

long catch_prob ; /* goalie catchable possibility */

short goalie_max_moves; /* goalie max moves after a catch */

long ckmargin ; /* corner kick margin */

long offside_area ; /* offside active area size */

short win_no ; /* wind factor is none */

short win_random ; /* wind factor is random */

short say_cnt_max ; /* max count of coach SAY */

short SayCoachMsgSize ; /* max length of coach SAY */

short clang_win_size;

short clang_define_win;

short clang_meta_win;

short clang_advice_win;

short clang_info_win;

short clang_mess_delay;

short clang_mess_per_cycle;

short half_time ; /* half time */

short sim_st ; /* simulator step interval msec */

61

5. The Soccer Monitor

short send_st ; /* udp send step interval msec */

short recv_st ; /* udp recv step interval msec */

short sb_step ; /* sense_body interval step msec */

short lcm_st ; /* lcm of all the above steps msec */

short SayMsgSize ; /* string size of say message */

short hear_max ; /* player hear_capacity_max */

short hear_inc ; /* player hear_capacity_inc */

short hear_decay ; /* player hear_capacity_decay */

short cban_cycle ; /* goalie catch ban cycle */

short slow_down_factor ; /* factor to slow down simulator and send intervals

short useoffside ; /* flag for using off side rule */

short kickoffoffside ; /* flag for permit kick off offside */

long offside_kick_margin ;/* offside kick margin */

long audio_dist ; /* audio cut off distance */

long dist_qstep ; /* quantize step of distance */

long land_qstep ; /* quantize step of distance for landmark */

long dir_qstep ; /* quantize step of direction */

long dist_qstep_l ; /* team right quantize step of distance */

long dist_qstep_r ; /* team left quantize step of distance */

long land_qstep_l ; /* team right quantize step of distance for landmark

long land_qstep_r ; /* team left quantize step of distance for landmark

long dir_qstep_l ; /* team left quantize step of direction */

long dir_qstep_r ; /* team right quantize step of direction */

short CoachMode ; /* coach mode */

short CwRMode ; /* coach with referee mode */

short old_hear ; /* old format for hear command (coach) */

short sv_st ; /* online coach's look interval step */

// spare variables which are to be used for paramenter added in the future

long sparelong1;

long sparelong2;

long sparelong3;

long sparelong4;

long sparelong5;

long sparelong6;

long sparelong7;

long sparelong8;

long sparelong9;

long sparelong10;

short start_goal_l;

short start_goal_r;

short fullstate_l;

short fullstate_r;

62

5.3. Soccermonitor Communication

short drop_time;

short spareshort6;

short spareshort7;

short spareshort8;

short spareshort9;

short spareshort10;

} server_params_t;

typedef struct {

short player_types;

short subs_max;

short pt_max;

long player_speed_max_delta_min;

long player_speed_max_delta_max;

long stamina_inc_max_delta_factor;

long player_decay_delta_min;

long player_decay_delta_max;

long inertia_moment_delta_factor;

long dash_power_rate_delta_min;

long dash_power_rate_delta_max;

long player_size_delta_factor;

long kickable_margin_delta_min;

long kickable_margin_delta_max;

long kick_rand_delta_factor;

long extra_stamina_delta_min;

long extra_stamina_delta_max;

long effort_max_delta_factor;

long effort_min_delta_factor;

long sparelong1;

long sparelong2;

long sparelong3;

long sparelong4;

long sparelong5;

long sparelong6;

long sparelong7;

long sparelong8;

long sparelong9;

long sparelong10;

63

5. The Soccer Monitor

short spareshort1;

short spareshort2;

short spareshort3;

short spareshort4;

short spareshort5;

short spareshort6;

short spareshort7;

short spareshort8;

short spareshort9;

short spareshort10;

} player_params_t;

See Server Parameters, Player Parameters and Player Types

� dispinfo t2:

container for the di�erent messages from server to monitor.

typedef struct {

short mode;

union {

showinfo_t2 show;

msginfo_t msg;

player_type_t ptinfo;

server_params_t sparams;

player_params_t pparams;

} body;

} dispinfo_t2 ;

� mode:

determines the kind of message the union body contains. NO INFO indicates no

valid info contained (never sent by the server). BLANK MODE tells the monitor

to show a blank screen (used by logplayer) (server/param.h).

NO_INFO 0

SHOW_MODE 1

MSG_MODE 2

BLANK_MODE 4

PT_MODE 7

PARAM_MODE 8

PPARAM_MODE 9

64

5.4. How to record and playback a game

5.3.2. Commands From Monitor to Server

The monitor can send to the server the following commands:

(dispinit) | (dispinit version 2)

sent to the server as �rst message to register as monitor (opposed to a player, that

connects on port 6000 as well) . "(dispinit)" is for information version 1, while "(dispinit

version 2)" is for version 2. You can change the version by setting the according monitor

parameter. (See 5.5 Parameters and Con�gurations)

(dispstart)

sent to start (kick o�) a game, start the second half or extended time. Ignored, when

the game is already running.

(dispfoul x y side)

sent to indicate a foul situation. x and y are the coordinates of the foul, side is LEFT

(1) for a free kick for the left team, NEUTRAL (0) for a drop ball and RIGHT (-1) for

a free kick for the right team.

(dispdiscard side unum)

sent to show a player the red card (kick him out). side can be LEFT or RIGHT, unum

is the number of the player (1 - 11).

(dispplayer side unum posx posy ang)

sent to place player at certain position with certain body angle, side can be LEFT (1) or

RIGHT (-1), unum is the number of the player(1 - 11). Posx and posy indicate the new

position of the player, which will be divided by SHOWINFO SCALE. And ang indicate

the new angle of a player in degrees. This command is added in soccerserver 7.02.

5.4. How to record and playback a game

To record games, you can call server with the argument:

-record LOGFILE

(LOGFILE is the log�le name) or set the parameter in server.conf �le:

record.log : on.

To specify the log�le version, you can call server with the argument:

-record_version [1/2]

or set the parameter in server.conf �le:

record_version : 2

The logplayer allows you to replay recorded games. Log�les can be read in by the

logplayer and sent to the connected soccermonitors. To replay log�les just call logplayer

with the log�le name as argument, start a soccermonitor and then use the buttons on

the logplayer window to start, stop, play backward, play stepwise.

65

5. The Soccer Monitor

5.4.1. Version 1 Protocol

Log�les of version 1 (server versions up to 4.16) are a stream of consecutive dispinfo t

chunks. Due to the structure of dispinfo t as a union, a lot of bytes have been wasted

leading to impractical log�le sizes. This lead to the introduction of a new log�le format

2.

5.4.2. Version 2 Protocol

Version 2 log�le protocol tries to avoid redundant or unused data for the price of not

having uniform data structs. The format is as follows:

� head of the �le:

the head of the �le is used to autodetect the version of the log�le. If there is no

head, Unix-version 1 is assumed. 3 chars 'ULG' : indicating that this is a Unix

log�le (to distinguish from Windows format)

� char version :

version of the log�le format

� body:

the rest of the �le contains the data in chunks of the following format:

� short mode:

this is the mode part of the dispinfo t struct (see 5.4.1 Version 1) SHOW MODE

for showinfo t information MSG MODE for msginfo t information

If mode is SHOW MODE, a showinfo t struct is following.

If mode is MSG MODE, next bytes are short board: containing the board info short

length: containing the length of the message (including zero terminator) string msg:

length chars containing the message

Other info such as DRAW MODE and BLANK MODE are not saved to log�les.

There is still room for optimization of space. The team names could be part of the head

of the �le and only stored once. The unum part of a player could be implicitly taken

from array indices.

Be aware of, that information chunks in version 2 do not have the same size, so you

can not just seek SIZE bytes back in the stream when playing log�les backward. You

have to read in the whole �le at once or (as is done) have at least to save stream positions

of the showinfo t chunks to be able to play log�les backward.

In order to keep compatibility between di�erent platforms, values are represented by

network byte order.

5.4.3. Version 3 Protocol

/***/

/********** NEEDS TO BE EXPANDED *********/

/***/

66

5.5. Settings and Parameters

5.5. Settings and Parameters

Soccermonitor has the following modi�able parameters:

\Used Value" is the current value of the parameter which is encoded in the moni-

tor.conf �le. \Default Value" is the value encoded in the source �les and will be used if

the user doesn't give one.

You can specify parameters described in the table above in command line as following:

You can also modify the parameters by specifying them in con�guration �le monitor.conf.

In the con�guration �le, each line consists a pair of name and value of a parameter as

follows: ParameterName : Value Lines that start with '#' are comment lines.

5.6. What's New

5.6.1. [7.07]

� The logplayer did not send server param, player param, and player type messages.

This has been �xed.

� The monitor would crash on some log�les because stamina max seemed to be set

to 0. The monitor will no longer crash this way.

5.6.2. [7.05]

� For quite some time, the logplayer has occasionally \skipped" so that certain cycles

were never displayed by the logplayer. This seems to be caused by the logplayer

sending too many UDP packets for the monitor to receive. Therefore, a new param-

eter has been added to the logplayer 'message delay interval'. After sending that

many messages, the logplayer sleeps for 1 microsecond, giving the monitor a chance

to catch up. This is not a guaranteed to work, but it seems to help signi�cantly. If

you still have a problem with the logplayer/monitor \skipping", try reducing mes-

sage delay interval from it's default value of 10. Setting message delay interval to

a negative number causes there to be no delay.

� The server used to truncate messages received from the players and coach to 128

characters before recording them in the log�le. This has been �xed.

5.6.3. [7.04]

� If a client connects with version > 7.0, all angles sent out by the server are rounded

instead of truncated (as they were previously) This makes the error from quan-

tization of angles (i.e. conversion of
oats to ints) both uniform throughout the

domain and two sided. This change was also made to all values put into the

dispinfo t structure for the monitors and log�les.

67

5. The Soccer Monitor

Parameter Name Used Value Default Value Explanation

host localhost Localhost hostname of soccerserver

port 6000 6000 port number of soccerserver

version 2 1 monitor protocol version

length magnify 6.0 6.0 magni�cation of size of �eld

goal width 14.02 7.32 goal width

print log o� On
ag for display log of communicatio

[on/o�]

Log line 6 6 size of log window

Print mark on On
ag for display mark on �eld [on/o�]

mark �le name mark.RoboCup.grey.xbmMark.xbm mark on �eld use �le name

ball �le name ball-s.xbm Ball.xbm ball use �le name

player widget size 9.0 1.0 size of player widget

player widget font 5x8 Fixed font(uniform number) of player widget

Uniform num pos x 2 2 position (X) of player uniform number

Uniform num pos y 8 8 position (Y) of player uniform number

Team l color Gold Gold Team L color

team r color Red Red Team R color

goalie l color Green Green Team L Goalie color

goalie r color Purple Purple Team R Goalie color

neck l color Black Black Team L Neck color

neck r color Black Black Team R Neck color

Goalie neck l color Black Black Team L Goalie Neck color

Goalie neck r color Black Black Team R Goalie Neck color

status font 7x14bold Fixed status line font [team name an

score,time,play mode]

popup msg o� O�
ag for pop up and down \GOAL!!" an

\O�side!" [on/o�]

Goal label width 120 120 pop up and down \GOAL!!" label widt

Goal label font -adobe-times-

bold-r-*-*-34-*-*-

--*-*-*

Fixed pop up and down \GOAL!!" label font

Goal score width 40 40 pop up and down \GOAL!!" score widt

Goal score font -adobe-times-

bold-r-*-*-25-*-*-

--*-*-*

Fixed pop up and down \GOAL!!" score font

O�side label width 120 120 pop up and down \O�side!" label width

O�side label font -adobe-times-

bold-r-*-*-34-*-*-

--*-*-*

Fixed pop up and down \O�side!" label font

eval o� O�
ag for evaluation mode

redraw player on O� always redraw player (needed for RH 5.

68

5.6. What's New

5.6.4. [7.02]

� A new command has been added to the monitor protocol:

(dispplayer side unum posx posy ang)

(contributed by Artur Merke)

See 5.3.2 Commands From Monitor to Server

5.6.5. [7.00]

� Included the head angle into the display of the soccermonitor. (source contributed

by Ken Nguyen)

� Included visualization e�ect when the player collided with the ball or the player

collided with another player. The monitor displays both cases with a black circle

around the player.

� Introduced new monitor protocol version 2. (See 5.4.2 Version 2 and 5.3.2 Com-

mands From Monitor to Server)

� Introduced new logging protocol version 3. (See 5.4.3 Version 3 Protocol)

� Fixed logging so that the last cycle of a game is logged.

69

5. The Soccer Monitor

70

6. Soccer Client

6.1. Protocols

This section provides a brief overview of the protocol between the Soccer Client and the

Soccer Server. More details on these protocols can be found in the Soccer Server section.

Note that the init and reconnect commands should be send to the player's UDP port

(default: 6000) of the Soccer Server machine, and after the response they sould be sent

to the port assigned to your player by the server, in a valid format. The server sends

the init response from this port (refer to section 1.2.1) . All the commands sent to or

received from the server are strings of common character and are in a pair of parenthesis.

6.1.1. Initialization and Reconnection

Every player wanting to connect to the server should introduce himself. This is like a

handshake and is done only at the beginning and optionally in the half time when you

want to reconnect.

Initialization

Your client should send an init command to the server in the following format :

(init TeamName [(version VerNum)] [(goalie)])

The goalie should include the "(goalie)" in the init command to be allowed by the

server to catch the ball or do another special goalie action. Note there can only be one

or no goalie in each team. (You are not obliged to use a goalie)

The Server welcomes you with a response to your init message in the following format:

(init Side UniformNumber PlayMode)

Or by an error message (if there is an error, i.e. you have initiated more than two

team, more than 11 players in a team or more than one goalie in a team):

(error no more team or player or goalie)

Side is your team's side of play, a character, l(left) or r(right). UniformNumber

is the player's uniform number (the players of each team are known by their uniform

number). PlayMode is a string representing one of the valid play modes.

71

6. Soccer Client

If you connect to server with versions 7:00 or higher you will receive additional server

parameters, player parameters and player types information (the last two are related

to the hetero players feature). For the exact format refer to the appendix.

(server param Parameters . . .)

(player param Parameters . . .)

(player type id Parameters . . .)

Here the hand shaking is �nished and your client is known as a valid player.

Reconnection

Reconnection is useful for changing the client program of a player without restarting the

game. It can only be done in a non-PlayOn playing mode (e.g. in the half time).

For reconnection you should send a reconnect command in the following format:

(reconnect TeamName UniformNumber)

And you will receive a response in the following format:

(reconnect Side PlayMode)

Or one of the following errors:

(can't reconnect)

if the game is in the PlayOn mode.

(error reconnect)

when no client reconnected due to an error. You may also receive the following error

if the team name is invalid (error no more team or player or goalie)

Here again if you are connecting to the server with version 7.00 or higher you will

receive additional server parameters, player parameters and player types information.

Disconnection

Before you disconnect, you can send a bye command to the server. This command will

remove the player from the �eld.

(bye)

There will be no answers from the server.

72

6.1. Protocols

Version Control

Due to the progressive development of the Soccer Server, new features have been added

every year and this resulted in changes and improvements in the protocols to support

these features. In order to keep compatibility with the older clients and making it easier

to work with (specially for researchers), a system has been implemented for the Protocols

Version Control. Every client should tell the server the version of its communication

protocol in the init command so that the server would be able to send the messages in

the proper format.

But note that although the communication protocol remains unchanged, the judg-

ment and the simulation rules may change and this will a�ect the whole game.

6.1.2. Control Commands

During the game each player can send action commands. The server executes the com-

mands at the end of the cycle and simulates the next cycle regarding the received com-

mands and the previous cycles data.

Body Commands

All the playing and movement behaviors of the player are consisted from a few commands

known as body commands that are presented brie
y below.

The results of these commands are a little complicated and depend on many simula-

tion factors. For the details of the execution of each command refer to the Soccer Server

Section.

(turn Moment)

The Moment is in degrees from �180 to 180. This command will turn the

player's body direction Moment degrees relative to the current direction.

(dash Power)

This command accelerates the player in the direction of its body (not direc-

tion of the current speed). The Power is between minpower (used value:

�100) and maxpower (used value: 100).

(kick Power Direction)

Accelerates the ball with the given Power in the given Direction. The direc-

tion is relative to the the Direction of the body of the player and the power

is again between minpower and maxparam.

(catch Direction)

73

6. Soccer Client

Goalie special command: Tries to catch the ball in the given Direction relative

to its body direction. If the catch is successful the ball will be in the goalie's

hand until kicked away.

(move X Y)

This command can be executed only before kick o� and after a goal. It

moves the player to the exact position of X (between �54 and 54) and Y

(between �32 and 32) in one simulation cycle. This is useful for before kick

o� arrangements.

Note that in each simulation cycle, only one of the above �ve commands can be

executed (i.e. if the client sends more than one command in a single cycle, one of them

will be executed randomly, usually the one received �rst)

(turn neck Angle)

This command can be sent (and will be executed) each cycle independently, along

with other action commands. The neck will rotate with the given Angle relative to pre-

vious Angle. Note that the resulting neck angle will be between minneckang (default:

�90) and maxneckang (default: 90) relative to the player's body direction.

Communication Commands

The only way of communication between two players is broadcasting of messages through

the say command and hearing through the hear sensor.

(say Message)

This command broadcasts theMessage through the �eld, and any player near enough

(speci�ed with audio cut dist, default: 50:0 meters), with enough hearing capacity will

hear the Message. The message is a string of valid characters.

(ok say)

Command succeeded.

In case of error there will be the following response from the Server:

(error illegal command form)

Misc. Commands

Other commands are usually of two forms:

� Data Request Commands

(sense body)

74

6.1. Protocols

Requests the server to send sense body information. Note the server sends sense

body information every cycle if you connect with version 6:00 or higher.

(score)

Request the server to send score information. The server's reply will be in this

format:

(score Time OurScore OpponentScore)

� Mode Change Commands

(change view Width Quality)

Changes the view parameters of the player. Width is one of narrow, normal or

wide and Quality is one of high or low. The amount and detail of the information

returned by the visual sensor depends on the width of the view and the quality. But

note that the frequency of sending information also depends on these parameters

(e.g. if you change the quality from high to low, the frequency doubles, and the

time between two see sensors will be cut to half).

6.1.3. Sensor Information

Sensor information are the messages that are sent to all players regularly (e.g. each cycle

or each one and half a cycle). There is no need to send any message to the server to get

these information.

All the returned information of the sensors have a time label, indication the cycle

number of the game when the data have been sent (indicated by Time). This time is

very useful.

Visual Sensor

Visual Sensor is the most important sensor, and is a little bit complicated. This sensor

returns information about the objects that can be seen from the player's view (i.e.

objects that are in the view angle and not very far).

The main format of the information is:

(see Time ObjInfo ObjInfo . . .)

The ObjInfos are of the format below:

(ObjName Distance Direction [DistChange DirChange [BodyFac-

ingDir HeadFacingDir]])

or

75

6. Soccer Client

(ObjName Direction)

Note that the amount of information returned for each object depends on its dis-

tance. The more distant the object is the less information you get. For more detailed

information regarding ObjInfo refer to Appendix.

ObjName is in one of the following formats:

(p [TeamName [Unum]])

(b)

(f FlagInfo)

(g Side)

p stands for player, b stands for ball, f stands for
ag and g stands for goal.

Side is one of l for left or r for right. For more information on FlagInfo refer to

Appendix.

Audio Sensor

Audio sensor returns the messages that can be heard through the �eld. They may come

from the online coach, referee, or other players.

The format is as follows:

(hear Time Sender Message)

Sender is one of the followings:

self: when the sender is yourself.

referee: when the sender is the referee of the game.

online coach l or online coach r

Direction: when the sender is a player other than yourself the relative direction of

the sender is returned instead.

Body Sensor

Body sensor returns all the states of the player such as remaining stamina, view mode

and the speed of the player at the beginning of each cycle:

(sense body Time (view mode f high j low g f narrow j normal j

wide g) (stamina Stamina E�ort) (speed Speed Angle) (head angle

Angle) (kick Count) (dash Count) (turn Count) (say Count) (turn neck

Count) (catch Count) (move Count) (change view Count))

The last eight parameters are counters of the received commands. Use the counters

to keep track of lost or delayed messages.

6.2. How to Create Clients

This section provides a brief description to write a �rst-step program of soccer client.

76

6.2. How to Create Clients

6.2.1. Sample Client

The Soccer Server distribution includes a very simple program for soccer clients, called

sampleclient. It is under the "sampleclient" directory of the distribution, and is

automatically compiled when you make the Soccer Server.

The sampleclient is not a stand-alone client: It is a simple `pipe' that redirects

commands from its standard input to the server, and information from the server to its

standard output. Therefore, nothing happens when users invoke the sampleclient. The

users must type-in commands from keyboards, and read the sensor information displayed

on the terminal. (Actually it is impossible to read sensor information, because the server

sends about 17 sensor informations (see information and sense body information) per

second.)

The sampleclient is useful to understand what clients should do, and what the

clients will receive from the server.

How to Use sampleclient

Here is a typical usage of the sampleclient.

1. Invoke client under sampleclient directory of the Soccer Server.

% ./client SERVERHOST

Here, SERVERHOST is a hostname on which Soccer Server is running.

Then the program awaits user input.

If the Soccer Server uses an unusual port, for example 6005, instead of the standard

port (6000), the users should use the following form.

% ./client SERVERHOST 6005

2. Type in init command from the keyboard.

(init MYTEAMNAME (version 7))

Here MYTEAMNAME is a team name the users want to use.

Then a player appears on the �eld. In the same time, the program starts to

output the sensor information sent from the server to the terminal. Here is a

typical output:

send 6000 : (init foo (version 7))

recv 1567 : (init r 1 before_kick_off)

recv 1567 : (server_param 14.02 5 0.3 0.4 0.1 60 1 1 4000 45 0 0.3 0.5 ...

recv 1567 : (player_param 7 3 3 0 0.2 -100 0 0.2 25 0 0.002 -100 0 0.2 ...

recv 1567 : (player_type 0 1 45 0.4 5 0.006 0.3 0.7 0 0 1 0.6)

recv 1567 : (player_type 1 1.16432 28.5679 0.533438 8.33595 0.00733326 ...

recv 1567 : (player_type 2 1.19861 25.1387 0.437196 5.92991 0.00717675 ...

77

6. Soccer Client

recv 1567 : (player_type 3 1.04904 40.0956 0.436023 5.90057 0.00631769 ...

recv 1567 : (player_type 4 1.1723 27.7704 0.568306 9.20764 0.00746072 ...

recv 1567 : (player_type 5 1.12561 32.4392 0.402203 5.05509 0.00621539 ...

recv 1567 : (player_type 6 1.02919 42.0812 0.581564 9.53909 0.00688457 ...

recv 1567 : (sense_body 0 (view_mode high normal) (stamina 4000 1) ...

recv 1567 : (see 0 ((g r) 61.6 37) ((f r t) 49.4 3) ((f p r t) 37 27) ...

recv 1567 : (sense_body 0 (view_mode high normal) (stamina 4000 1) ...

...

The �rst line, \send 6000 : (init foo (version 7))", is a report what the

client sends to the server. The second line,"recv 1567 : (init r 1 before kick off)

is a report of the �rst response from the server. Here, the server tells the client

that the assigned player is the right side team (r), its uniform number is 1, and

the current playmode is before kick off. The next 9 lines are server param and

player param, which tells various parameters used in the simulation. Finally, the

server starts to send the normal sensor informations, sense body and see. Be-

cause the server sends these sensor information every 100ms or 150ms, the client

continues to output the information endlessly.

3. Type in move command to place the player to the initial position. The player

appears on a bench outside of the �eld. Users need to move it to its initial position

by move command like:

(move -10 10)

Then the player moves to the point (-10,10).

Because, as mentioned before, the client program outputs sensor information

endlessly, users can not see strings they type in. So, they must type-in commands

blindly. 1

4. Click `Kick-O�' button on the Soccer Server. Then the game starts. The users

can see that the time data in each sensor information (the �rst number of see and

sense body information) are increasing.

5. After then, users can use any normal command, turn, dash, kick and so on. For

example, users can turn the player to the right by typing:

(turn 90)

The player can dash forward with full power by typing:

(dash 100)

1Users can redirect the output to any �le or program. For example, you can redirect it to /dev/null

to discard the information by invoking \% client SERVERHOST > /dev/null". Then, the users can

see the string they type-in.

78

6.2. How to Create Clients

When the player is near enough to the ball, it can kick the ball to the left with

power 50 by:

(kick 50 -90)

Note again that because of endless sensor output, users must type-in these com-

mands blindly.

Overall Structure of Sample Client

The structure of the sampleclient is simple. The brief process the client does is as

follows:

1. Open a UDP socket and connect to the server port. (init connection())

2. Enter the read-write loop (message loop), in which the following two processes

are executed in parallel.

� read user's input from the standard input (usually a keyboard) and send it

to the server (send message()).

� receive the sensor information from the server (receive message()) and out-

put it to the standard output (usually a console).

In order to realize the parallel execution, sampleclient uses the select() function.

The function enables to wait for multiple input from sockets and streams in a single

process. When select() is called, it waits until one of the sockets and streams gets

input data, and tells which sockets or streams got the data. For more details of the

usage of select(), please refer to the man page or manual documents.

An important tip in the sampleclient is that the client must change the server's

port number when it receives sensor informations from the server. This is because the

server assign a new port to a client when it receives an init command. This is done by

the following statement in "client.c" (around line 147):

printf("recv %d : ", ntohs(serv_addr.sin_port));

+ sock->serv_addr.sin_port = serv_addr.sin_port ;

buf[n] = '\0' ;

6.2.2. Simple Clients

In order to develop complete soccer clients, what users must do is to write code of a

`brain' part, which performs the same thing as users do with the sampleclient described

in the previous section. In other words, users must write a code to generate command

strings to send to the server based on received sensor information.

Of course it is not a simple task (so that many researchers tackle RoboCup as a

research issue), and there are various ways to implement it. Simply saying, in order to

develop player clients, users need to realize the following functions:

79

6. Soccer Client

[Sensing] To analyze sensor information: As shown in the previous section, the server

sends various sensor information in S-expressions. Therefore, a client needs to

parse the S-expressions. Then, the client must analyze the information to get a

certain internal representation. For example, the client needs to analyze a visual

information to estimate player's location and �eld status, because the visual in-

formation only include relative locations of landmarks and moving objects on the

�eld.

[Action Interval] To control interval of sending commands: Because the server accepts

a body command (turn, dash and kick) per 100ms, the client needs to wait appro-

priate interval before sending a command.

[Parallelism] To execute sensor and action processes in parallel: Because the Soccer

Server processes sensor information and command asynchronously, clients need

to execute a sensor process, which deals with sensor information, and an action

process, which controls to send commands, in parallel.

[Planning] To make a plan of play: Using sensor information, the client needs to gen-

erate appropriate command sequences of play. Of course, this is the �nal goal of

developing soccer clients!!

Here are two simple examples of stand-alone players, sclient1 and sclient2, which

just chase the ball and kick it to the opponent goal. The sources are available from:

ftp://ci.etl.go.jp/pub/soccer/client/noda-client-2.0.tar.gz

In the examples, the functions listed above are realized as follows:

� For Sensing function, both examples use common facilities of class BasePlayer,

class FieldState, and estimatePos functions. By these facilities, the example

programs do:

{ receive data from a socket connected with the server,

{ parse the data as S-expression,

{ interpret the expression into internal data format (class SensorInfo),

{ and in the case the received data is visual sensor information, estimate player's

and other object's positions.

For more detail, please read the source code.

� For Action Interval and Parallelism functions, the two examples use di�erent meth-

ods. The �rst example, sclient1 uses timeout of select() function. The second

one, sclient2 uses the multi-thread (pthread) facility. These are described below.

� For Planning function, both examples have very simple planners as follows:

{ If the player does not see the ball in recent 10 steps, or if the player can not

estimate its position in recent 10 steps, it looks around.

80

6.2. How to Create Clients

{ If the ball is in kickable area, it kicks the ball to the opponent goal.

{ Otherwise, the player rushes to the ball (turns to the ball and dashes).

sclient1

The sclient1 uses the timeout facility of select() function to realize Action Interval

and Parallelism.

The key part of the program is in MyPlayer::run(). Here is the part of the source

code:

//--

// enter main loop

SocketReadSelector selector ;

TimeVal nexttic ; // indicate the timestamp for next command send

nexttic.update() ; // set nexttic to the current time.

while(True) {

//---

// setup selector

selector.clear() ;

selector.set(socket) ;

//---

// wait socket input or timeout (100ms) ;

Int r = selector.selectUntil(nexttic) ;

if(r == 0) { // in the of timeout. (no sensor input)

doAction() ; // enter action part

nexttic += TimeVal(0,100,0) ; // increase nexttimetic 100ms

} else { // got some input

doSensing() ; // enter sensor part

}

}

Here, class SocketReadSelector is a class to abstract facilities of select() and is

de�ned in "itk/Socket.h". In the line \Int r = selector.selectUntil(nexttic)

;", the program awaits the socket input or timeout indicated by nexttic, which holds

the timestamp of the next tic (simulation step). The function returns 0 if timeout, or

the number of receiving sockets. In the case of timeout, the program calls doAction() in

81

6. Soccer Client

which a command is generated and sent to the server, or otherwise, it calls doSensing()

in which a sensor information is processed.

sclient2

The sclient2 uses the POSIX thread (pthread) facilities to realize Action Interval and

Parallelism.

The key part of the program is also in MyPlayer::run(). Here is the part of the

source code:

//--

// fork sensor thread

forkSensor() ;

//--

// main loop

while(True) {

if (!isBallSeenRecently(10)) {

//------------------------------

// if ball is not seen recently

// look around by (turn 60)

for(UInt i = 0 ; i < 6 ; i++) {

turn(60) ;

}

} else if (kickable()) {

...

}

}

The statement \forkSensor() ;" invokes a new thread for receiving and analyzing the

sensor information. (The behavior of the sensor thread are de�ned in "SimpleClient.*"

and "ThreadedClient.*".) Then the main thread enters the main loop in which action

sequences of \chasing the ball and kick to the goal" are generated. Because Sensing

function is handled in the sensor thread in parallel, the main thread needs not take care

of the sensor input.

In order to keep action interval to be 100ms, the sclient2 waits for the next simula-

tion step by the function ThreadedPlayer::sendCommandPre()de�ned in "ThreadedPlayer.cc"

as follows:

Bool ThreadedPlayer::sendCommandPre(Bool bodyp) {

cvSend.lock() ;

82

6.2. How to Create Clients

if(bodyp) {

while(nextSendBodyTime.isFuture())

cvSend.waitUntil(nextSendBodyTime) ;

}

while(nextSendTime.isFuture()) {

cvSend.waitUntil(nextSendTime) ;

}

return True ;

} ;

In this function, MutexCondVar cvSend provide a similar timeout facility of select()

function used in sclient1 described above. (MutexCondVar is a combination of condition

variable (pthread cond t) and mutex (pthread mutex), and is de�ned in "itk/MutexCondVar.h".)

Because the function is called just before the player sends a command to the server, and

nextSendBodyTime is controlled to indicate the timestamp of the next simulation step,

the thread waits to send a command in the next tic.

6.2.3. Tips

Here we collect tips to develop soccer client programs.

� Debugging is the main problem in developing your own team. So try to �nd easy

debuging methods.

� A nice and simple way to see your program's variables in a condition is to use

an abort() command or some asserts to force the program to core-dump; And

debug the core using gbd.

� Log every message received from the server and sent to the server. It is very useful

for debugging.

� Using ready to use libraries for socket and parsing problems is useful if you are a

beginner.

� Remember to pass the version number to the server in the init command. Although

it is optional, the default is 3.00 which usually is not desired.

� Even if the catch probability is 1:00 your catch command may be unsuccessful

because of errors in returned sensors about the positions.

� The �rst serious problem you may encounter is the timing problem. There are

many methods to synchronize your client's time with server. One simple methods

is to use received sense body information.

83

6. Soccer Client

� Beware of slow networks. If your timing is not very powerful your client's will

behave abnormaly in a crowded or slow network or if they are out of process

resources (e.g. you run many clients on one slow machine). In this case they may

see older positions and will try to act in these positions and this will result in

confusion (e.g. they will turn around themselves)

� The main usage of
ags are for the player to �nd the position of himself in the �eld.

Your very �rst clients may ignore
ags and play with relative system of positions.

But you may need a positioning module in the near future. There are many of the

in the ready to use libraries.

� The program should check the end of bu�er in analyzing sensor information. The

sensor information uses S-expressions. But the expression may not be completed

when the sensor data is longer than the bu�er, so that some closing parentheses are

lost. In this case, the program may core-dump if it parses the expression naively.

84

7. The coach

7.1. Introduction

Coaches are privileged clients used to provide assistance to the players. There are two

kinds of coaches, the online coach and the trainer. The latter is often called 'o�-line

coach' as well, but for clarity sake we will use the term 'trainer'.

7.2. Distinction between trainer and online coach

In general, the trainer can exercise more control over the game and may be used only

in the development stage, whereas the online coach may connect to oÆcial games. The

trainer is useful during development for such tasks as running automated learning or

managing games. The on-line coach is used during games to provide additional advice

and information to the players.

While developing player clients, for example when applying machine learning meth-

ods to learn skills like dribbling or kicking, it might be useful to create training sessions

in an automated way. Therefore, the trainer has the following capabilities:

� It can control the play-mode.

� It can broadcast audio messages. Such a message can consist of a command or

some information intended for one or more of the player-clients. Its syntax and

interpretation are user-de�ned.

� It can move the players and the ball to any location on the �eld and set their

directions and velocities.

� It can get noise-free information about the movable objects.

For details on these capabilities see Section 7.3.

The online coach is intended to observe the game and provide advice and information

to the players. Therefore, it's capabilities are somewhat limited:

� It can communicate with the players.

� It can get noise-free information about the movable objects.

85

7. The coach

To prevent the coach from controlling each client in a centralized way, communication

is restricted in several ways as described in Section 7.7. The online coach is a good tool

for opponent modelling, game analysis, and giving strategic tips to its teammates. Since

the coach gets a noise-free, global view over the �eld and has less real-time demands, it

is expected that it can spend more time deliberating over strategies. See Section 7.6 for

more details about the online coach.

7.3. Trainer

7.3.1. Connecting with and without the soccerserver referee

By default, an internal referee module is active within the soccerserver that controls the

match (see Section 4.7). If the trainer should have complete control over the match,

the soccerserver must be instructed to deactivate the referee module. This means for

example, that the play-mode will not change and players will not be moved back to their

sides after a goal. The trainer has to react to these events by its own rules.

The soccerserver must be informed at startup-time that a trainer-client will be used.

Add the option -coach1 to the command arguments of the soccerserver application when

a coach-client is used and the internal referee module of the server must be deactivated.

You can also add the line coach to the server.conf.

If you want to connect a trainer but let the server referee remain activated, add the

option -coach w referee to the command arguments of the server or add coach w referee

to the server con�guration �le.

If the server is invoked with one of the trainer modes, it prepares a UDP socket to

which the trainer-client can connect. The default port number is 60012. If a di�erent

port number is needed the new port can be set by assigning its value to the coach port

parameter (see Section 4.9.1).

7.4. Commands

The trainer and the online coach can use the following set of commands. The items are

listed in three categories. The �rst category includes commands that can be used only

by the trainer, the second includes commands that can be used also by the online coach

with certain restrictions, and the third lists commands that can be used by both trainer

and online coach.

7.4.1. Commands that can be used only by the trainer

� (change mode PLAY MODE)

1Note: The name of this parameter refers to the notion of 'o�ine-coach', not to be mixed up with the

online-coach.
2The default port number for online coaches is 6002.

86

7.4. Commands

Change the play-mode to PLAY MODE. PLAY MODE must match one of the

modes de�ned in Section 4.7.1. Note that for most play-mode requests the soc-

cerserver will only change the play-mode. The position of the ball usually remains

unchanged, but in some cases players will be moved. E.g. in free-kick and kick-in

playmodes they will be moved away from the ball if they stand within a certain

radius. When changing to `before kick off' they will be even moved to their

own side.

Possible replies by the soccerserver:

{ (ok change mode)

The command succeeded.

{ (error illegal mode)

The speci�ed mode was not valid.

{ (error illegal command form)

The PLAY MODE argument was omitted.

� (move OBJECT X Y [VDIR [VELX VELY]])

This command will move OBJECT, which may be a player or the ball (see Sec-

tion sec:sensormodels for format information), to absolute position (X, Y). If VDIR

is speci�ed, it will also change its absolute facing direction to VDIR (this only

matters for players). Additionally, if VELX and VELY are speci�ed, the object's

velocity will be set accordingly.

The trainer always uses left-hand coordinates.

Possible replies by the soccerserver:

{ (ok move)

The command succeeded.

{ (error illegal object form)

The OBJECT speci�cation was not valid.

{ (error illegal command form)

The position, direction, and/or velocity speci�cation was not valid.

� (check ball)

Ask the soccerserver to check the position of the ball. Four positions are de�ned:

{ in �eld

The ball is within the boundaries of the �eld.

{ goal l

The ball is within the area assigned to the goal at the left side of the �eld.

{ goal r

The ball is within the area assigned to the goal at the right side of the �eld.

87

7. The coach

{ out of �eld

The ball is somewhere else.

Note that the states `goal l' and `goal r' do not necessary imply that the ball

actually crossed the goal line.

Possible replies by the soccerserver:

{ (ok check ball TIME BALLPOSITION)

BALLPOSITION will be one of the states speci�ed above.

� (start)

This commands starts the server, e.g. sets the play-mode to `kick off l'. This

essentially simulates pressing the kick o� button on the monitor.

If the trainer does not send an init command, then the �rst commands of any type

received from the trainer will cause the server to start, e.g. set the play-mode to

`kick off l'.

Possible replies by the soccerserver:

{ (ok start)

The command succeeded.

� (recover)

This command resets players' stamina, recovery, e�ort and hear capacity to the

values at the beginning of the game.

Possible replies by the soccerserver:

{ (ok recover)

The command succeeded.

� (ear MODE)

It turns on or o� the sending of auditory information to the trainer. MODE must

be one of on and o�. If (ear on) is sent, the server sends all auditory information

to the trainer. See Table 7.3 for the format. If (ear o�) is sent, the server stops

sending auditory information to the trainer.

Possible replies by the soccerserver:

{ (ok ear on)

(ok ear o�)

Both replies indicate that the command succeeded.

{ (error illegal mode)

MODE did not match on or o�.

{ (error illegal command form)

The MODE argument was omitted.

88

7.4. Commands

7.4.2. Commands that can also be used by the online coach with certain
restrictions

� (init (version VERSION)) for the trainer and

� (init TEAMNAME (version VERSION)) for the online coach.

These commands tell the server which protocol version should be used to commu-

nicate with the trainer or coach. In the case of the online coach TEAMNAME has

to be speci�ed to indicate which team the coach belongs to. Note that the coach

must connect after at least one player from its team.

The trainer is not required to issue an init command. However, it is recommended

that the trainer does so. Otherwise, the server will communicate with an older

protocol.

It should be mentioned that the default port is 6001 for the trainer and 6002 for

the online coach.

Possible replies by the soccerserver:

{ (init ok)

The command succeeded in case of the trainer.

{ (init SIDE ok)

The command succeeded in case of the online coach. SIDE is either 'l' or 'r'.

� (say MESSAGE)

Note that the online coach can use this command with the same syntax, but there

are more restrictions. See Section 7.6.2 for details.

This command broadcasts the message MESSAGE to all clients in the case of the

trainer and only to teammates in the case of the online coach. For the trainer the

format of MESSAGE is the same as for a player-client. It must be a string whose

length is less than say coach msg size(see Section 4.9.1) and it must consist of

alphanumeric characters and/or the symbols ().+*/?<>

The format which the players hear these messages can be found in Section 4.3.1.

Possible replies by the soccerserver:

{ (ok say)

The command succeeded.

{ (error illegal command form)

MESSAGE did not match the required format.

� (change player type TEAM NAMEUNUMPLAYER TYPE) for the trainer

and

89

7. The coach

� (change player type UNUM PLAYER TYPE) for the online coach.

These commands can be used to change the heterogeneous player type (see Sec-

tion 4.6) of the player with the number UNUM of team TEAM NAME to the type

PLAYER TYPE. PLAYER TYPE is a digit between 0 and 6, where 0 denotes

the default player type. Note that in the case of the online coach the argument

TEAM NAME is missing, because it can only change player types in its own team.

The trainer does not have to comply to the rule that a maximum of three (speci�ed

by subs max) players of each type can be on the �eld.

See Section 7.6.3 for details about the restrictions as to when and how the online

coach may substitute players.

Possible replies by the soccerserver to both trainer and online coach:

{ (warning no team found)

The team does not exist.

{ (error illegal command form)

If change player type is not followed by a string, two integers and a close

bracket.

{ (warning no such player)

If there is no player with that uniform number on that team.

{ (ok change player type TEAM UNUM TYPE)

The command succeeded.

Additionally, the soccerserver can send the following replies to the online coach:

{ (warning cannot sub while playon)

If the play-mode is `play on'.

{ (warning no subs left)

If the coach has already made its three (speci�ed by subs max) subs for the

game.

{ (warning max of that type on �eld)

If the player-type is not the default and there are three (speci�ed by subs max)

of that type already on the �eld.

{ (warning cannot change goalie)

If the coach tries to change the player type of the goalie.

The server responds to the teammates with:

{ (change player type UNUM TYPE)

and opponents (including opponent coach) with:

{ (change player type UNUM)

90

7.4. Commands

7.4.3. Commands that can be used by both trainer and online-coach

� (look)

This command provides information about the positions of the following objects

on the �eld:

{ The left and right goals.

{ The ball.

{ All active players.

Note that the trainer and online coach for both sides receive left hand coordinates.

That is, the coaches receive information in the global coordinates that the left hand

team uses. In general, the players receive no global information (the one exception

being the move command), but it is common for teams to localize themselves so

that the negative x direction is towards the goal they defend.

Possible replies by the soccerserver:

{ (ok look TIME (OBJ1 OBJDESC1) (OBJ2 OBJDESC2) . . .)

OBJj can be any of the objects mentioned above. See Section 4.3 for infor-

mation about the way the names for those objects are composed. OBJDESCj

have the following form:

* For goals : X Y

* For the ball: X Y DELTAX DELTAY

* For players : X Y DELTAX DELTAY BODYANGLE NECKANGLE

The coordinates are always in left-hand orientation, no matter whether a trainer

or online coach is used.

If the trainer/coach should receive visual information periodically, use the (eye

on) command.

� (eye MODE)

MODE must be one of on and o�. If (eye on) is sent, the server starts sending

(see global . . .) information (see Section 7.5) every 100 ms (the interval is

speci�ed by the send vi step parameter automatically to the client. If (eye o�)

is sent, the server stops to send visual information automatically. In this case the

trainer/coach has to ask actively with (look), if it needs visual information.

Possible replies by the soccerserver:

{ (ok eye on)

(ok eye o�)

Both replies indicate that the command succeeded.

{ (error illegal mode)

MODE id not match on or o�.

91

7. The coach

{ (error illegal command form)

The MODE argument was omitted.

� (team names)

This command makes the trainer/coach receive information about the names of

both teams and which side they are playing on.

Possible replies by the soccerserver:

{ (ok team names [(team l TEAMNAME1) [(team r TEAMNAME2)]])

Depending on whether the teams already connected no, one, or both team

name(s) will be supplied. Recall that the �rst team that connects will be on

the left side.

7.5. Messages from the server

Apart from the replies to the commands mentioned above the server also sends some

messages to the trainer and online coach. If the clients connect to the server with a

version >= 7.0 (using the init-command), they will receive the following parameter

messages just like player clients:

� (server param . . .) once

� (player param . . .) once

� (player type . . .) once for each player type

See Section 4.2.2 for details on the parameter messages.

If the client chooses to receive visual information in each cycle by sending (eye on)

it will receive messages in the following format every 100 ms (send vi step):

(see global (OBJ1 OBJDESC1) (OBJ2 OBJDESC2) . . .)

OBJj denotes the name of the object. See Table 4.3 for information about the way

the names for those objects are composed. OBJDESCj have the following form:

� For goals : X Y

� For the ball: X Y DELTAX DELTAY

� For players : X Y DELTAX DELTAY BODYANGLE NECKANGLE

The syntax is the same as in the reply to the (look) command, so coordinates are

always in left-hand orientation.

If the client wants to receive auditory information and sent (ear on) to the server, it

will receive all auditory information, from both the referees and all of the players. There

are two kinds of hear messages:

92

7.6. Online coach

� (hear TIME referee MESSAGE) for all referee messages, such as \play on"

and \free kick left". See Section 4.7 for a list of the valid messages from the referee.

� (hear TIME (p "TEAMNAME" NUM) "MESSAGE") for all player mes-

sages. Note the quotes around the message.

See Section 4.3.1 for more details about the players speaking and listening abilities.

7.6. Online coach

7.6.1. Introduction

The online coach is a privileged client that can connect to the server in oÆcial games.

It has the capability of receiving global and noise-free information about the objects

on the �eld. In order to encourage research in this area starting in 2001 there will be

special coach contests. This way, research groups that do not want to develop a team

of player clients can participate in the RoboCup challenge by focussing on the online

coach. Additionally, in order to make it possible to use a single coach with a variety of

teams, a standard coach language has been developed that can be used to communicate

with the players.

See Section 7.4 and 7.5 for details about the commands that can be used by the

online coach and messages that will be sent by the server.

7.6.2. Communication with the players

Prior to version 7.00, the online coach could say say short (128 characters, say coach msg size)

alphanumeric (plus the symbols ().+*/?<>) messages when the play-mode is not `play on'.

This type of message still exists as a \freeform" message, but there are now other stan-

dard message types.

To prevent coaches from micro-controlling every single action of the players commu-

nication is restricted in the following ways. In the standard coach language there are

four other types of messages: advice, de�ne, info, and meta messages. Per 300 cycles

(speci�ed by clang win size) the coach can send one of each. Note that the number

of allowed messages can be changed by setting the clang advice win, clang de�ne win,

clang info win, and clang meta win parameters (see Section 4.9.1). The messages are

heard by the players 50 (speci�ed by clang mess delay) cycles later. If the play-mode

is not `play on', one (speci�ed by clang mess per cycle) message is sent to the players

in each cycle, even if the delay time has not elapsed. Messages that are sent while the

play mode is not `play on' do not count towards the message number restriction. For

example, if the default values are used the coach can send one message per cycle during

breaks that will be heard by the players without delay. The server guarantees that mes-

sages will be sent to the players in the same order in which they were received from the

coach.

The language grammar developed below does not place restrictions on the length of

the messages which can be sent to the server. However, for very practical reasons, any

93

7. The coach

message in the standard language can not be longer than 2013 characters (this is so the

maximum message which should be sent to the player is 2048 characters).

For freeform messages, the coach can only speak in non-`play on' modes. The coach

can send say coach cnt max freeform messages per game. The length of these messages

has to be less than say coach msg size. If the game continues into extended time, the

online coaches are given an additional say coach cnt max messages to say every addi-

tional 6000 cycles (or whatever the normal length of a game is). Allowed messages are

cumulative, so if the coach does not use all its allowed messages, it can use them in the

extended time. The server will send (error said too many messages) if the coach

tries to send messages after it reached the maximum number.

The standard coach language will be described in detail in Section 7.7.

7.6.3. Changing player types in a real game

Using the change player type-command (described in in Section 7.4) the online coach

can change player types unlimited times in `before kick off' play-mode. Of course

these changes have to comply with the general rules about heterogeneous players (see

Section 4.6). After kick-o� player types can be changed three (subs max) times during

play-modes that are not `play on'.

See the description of the change player type-command in Section 7.4 for details

about the possible replies from the server.

Note: A player client will be informed about substitutions that occurred before the

client connected by the message (change player type UNUM TYPE) for substi-

tutions in it own team and (change player type UNUM) for substitutions in the

opponent team.

7.7. The standard coach language

7.7.1. General properties

The standard coach language was developed to enable coaches to work together with

teams from di�erent research groups. One of the design goals was to have clear semantics

that should prevent misinterpretation from both the players and the coach. The language

is based on low-level concepts that can be combined to construct new high level concepts.

Additionally, coaches can communicate a certain number of freeform messages that

may be arbitrary strings to the players during non-`play on'-modes. See Section 7.6.2

for details. Be aware though, that freeform messages probably will not be understood

by other teams if you plan to use your coach with other teams.

The language description below is the just the �rst version of the language developed

by the community. It is hoped that all interested researchers will continue to develop

this language and it will be improved over time.

Note that the server itself parses all the coach messages using
ex and bison (the

GNU replacements for lex and yacc) and constructs a simple representation based on

a C++ class hierarchy. Please feel free to use and modify this code from the server to

94

7.7. The standard coach language

handle the parsing of the coach messages. In particular, look at the coach_lang.[Chly]

and coach_lang_comp.[Ch] �les.

7.7.2. Overview of the �ve message types

There are �ve types of coach messages in the standard coach language: Info, Advice,

De�ne, Meta, and Freeform.

Info Info messages carry information that the coach believes the players should know,

e.g. frequent positions of the opponent or the player type of opponent players.

Info messages can carry information about the opponent (single players, sets of

players, or the whole team), or about the coach's own team and players.

Format: (info TOKEN1 TOKEN2 . . . TOKENn)

The format of TOKENi will be described in Section 7.7.3.

Advice Advice messages tell the players what the coach believes they should do, either

at an individual, group or team level. Advice messages can thus never instruct

opponent players what they should do.

Format: (advice TOKEN1 TOKEN2 . . . TOKENn)

The format of TOKENi will be described in Section 7.7.3.

De�ne De�ne messages introduce names i.e. shortcuts for regions, directives, conditions,

and actions. (these will be described later). While these messages do not add

expressivity, it could allow the coach to deal with the absolute message length

restriction, reduce network load, and make the messages more understandable for

humans.

Format: (de�ne DEFINE TOKEN1 DEFINE TOKEN2 . . . DEFINE TOKENn)

There are four types of DEFINE TOKEN:

� (de�ner name REGION)

� (de�nec name CONDITION)

� (de�ned name DIRECTIVE)

� (de�nea name ACTION)

Note that the name must be deliminted by quotes and it limited to 40 characters.

Meta Meta messages are used to carry meta-level information about the coach-players

interactions, such as the number of messages sent, the standard language version

supported, etc. These messages are intended purely to support debugging and

upward-compatibility.

Format: (meta META TOKEN1 META TOKEN2 . . .)

Only one form of META TOKEN exists at this stage:

95

7. The coach

� (version X)

The coach uses protocol version X.

Freeform Freeform messages allow an arbitrary short string (less that say coach msg size

characters), but only when the play-mode is not `play on'. The message can consist

on alphanumeric characters plus the symbols ().+*/?<> Only say coach cnt max

messages can be sent per 6000 cycles.

Format: (freeform "STRING")

Note that STRING must be included in quotes.

7.7.3. Semantics and syntax details of info and advice messages

In the following the syntax and semantics of the aforementioned TOKENs in info and

advice messages will be described.

There is one special token, (clear), which tells the player to ignore all previous

info/advice (this is like forcing the time to live of all messages to 0).

All other token involve a condition in which it applies, and a list of directives for the

team and/or individual players. Basically, a token speci�es a set play, or a reactive plan.

Format: (TTL CONDITIONDIRECTIVE1 DIRECTIVE2 . . . DIRECTIVEn)

TTL means time-to-live and speci�es the coach's assumption as to when it thinks

the information will become obsolete. After TTL cycles since the coach sent the message

it becomes irrelevant. Note that the time to live depends on when the coach sent the

message, not when the player received it.

As INFO messages, tokens report on the coach's beliefs about the opponent's or its

own team's plans and behavior. As ADVICE messages, tokens direct the team to act in

particular ways.

This form makes using ADVICE messages very easy. Each such token is basically a

simple rule with a condition on the left-hand side, and a set of actions on the right hand

side. Thus each rule can be thought of as essentially specifying an if-then statement:

if CONDITION

then { DIRECTIVE_1 DIRECTIVE_2 ... }

In the player's programs, it is easy to represent all the advice given by the coach as

a small rule-base. Following the advice would be easy by matching the current world

state against the condition, and trying to act on the directives. Note: If more than one

condition applies to the current situation and the corresponding directives di�er, it is

up to the player to choose the directive. Note that the player should also exercise some

discretion in following directives. For example, if the only directive which matches is to

pass to player 5, but player 5 is well-covered by opponents, the player with the ball may

choose to ignore the directive for now.

� Conditions:

A condition is made from the logical connectives over atomic state description

propositions:

96

7.7. The standard coach language

{ (true)

Always true.

{ (false)

Always false.

{ (ppos TEAM UNUM SET INT INT REGION)

The �rst INT is the MINIMUM and the second is the MAXIMUM At least

MINUMUM but no more than MAXIMUM players in UNUM SET from team

TEAM are in region REGION. Regions and unum sets are more precisely

de�ned below. TEAM is either "our" or "opp". There is no ambiguity since

the coach can only be heard by its own players.

{ (bpos REGION)

The ball is in region REGION.

{ (bowner TEAM UNUM SET)

The ball is controlled by some player in UNUM SET of team TEAM. The

ball-owner is the last player that had ball contact (i.e. the ball was in his

kickable area), even if the ball left his control after that.

{ (pmode PLAY MODE)

The play-mode is PLAY MODE. See Section 7.7.4 for the valid values of

PLAY MODE.

The logical connectives are:

{ (and CONDITION1 CONDITION2 . . . CONDITIONn)

{ (or CONDITION1 CONDITION2 . . . CONDITIONn)

{ (not CONDITION)

An example condition: "When opponent player 3 is in region X and controls the

ball" would be

(and (player pos opponent f3g X) (ball owner opponent f3g))

� Directives:

Directives are basically lists of actions for individual sets of players and come in

two forms:

{ (do TEAM UNUM SET ACTION) (players should take this action)

{ (dont TEAM UNUM SET ACTION) (players should avoid taking this

action)

In INFO messages, directives convey knowledge about the plans/behaviors of the

players or their opponents.

� Actions:

97

7. The coach

{ (pos REGION)

The player should position itself in REGION.

{ (home REGION)

The player's default position should be in REGION. This directive is intended

largely to specify formations for the team.

{ (bto REGION BALLMOVE SET)

The ball should be moved towards the region REGION. BALLMOVE SET

can include the characters 'p','d','c', and/or 's' for pass, dribble, clear (kick

to no particular player), and score. Note that no spaces are needed and order

does not matter. Some valid BALLMOVE SET values are \pd," \s," and

\pdcs." Of course it is up to the players to decide, especially which of the

actions in BALLMOVE SET it will pursue. Also if the speci�ed REGION in

the case of a score directive is not in the goal area, the player should decide

where to shoot.

{ (bto UNUM SET)

The ball should be passed to some player in UNUM SET.

{ (mark UNUM SET)

The player should mark some opponent player in UNUM SET.

{ (markl REGION)

The passing lane from the current ball position to REGION should be marked.

{ (markl UNUM SET)

The passing lane from the current ball position to some opponent player in

UNUM SET should be marked.

{ (oline REGION)

The o�side-trap line for the player/team should be set at REGION.

{ (htype TYPE)

The player is of heterogeneous type TYPE. The TYPE number is as described

in Section 4.6. A value of -1 should clear the player's idea of the heterogeneous

type.

� Regions:

Any REGION token can be any of the following:

{ a POINT

This is de�ned more precisely below

{ (quad POINT1 POINT2 POINT3 POINT4)

De�nes a four-sided shape given by the four coordinates, using the global co-

ordinate system and point primitive above. POINT1 is connected to POINT2,

which is connected to POINT3, which is connected to POINT4, which is con-

nected back to PAINT1.

98

7.7. The standard coach language

{ (arc POINT RADIUS SMALL RADIUS LARGE ANGLE BEGIN

ANGLE SPAN)

De�nes a donut-arc: the area between two circles co-centered at point POINT,

having the given radii, with the arc de�ned starting at the beginning angle

and covering the spannign angle. For example a, a circle with radius r could

be de�ned as \(arc (pt 0 0) 0 r 0 360)", and a U-shaped region could be

de�ned as \(arc (pt 0 0) 5 10 0 180)"

{ (null)

The null (empty) region.

{ (reg REG1 REG2 . . . REGn)

De�nes a region made up from the union of the given regions.

A POINT is any of the following:

{ (pt X Y)

X and Y are reals and in global coordinates. This is the absolute position

(X,Y);

{ (pt X Y POINT) This is the point (X,Y)+POINT.

{ (pt ball) The current global position of the ball.

{ (pt TEAM UNUM) The current position of player number UNUM on team

TEAM (either 'our' or 'opp')

The use of these relative points makes it easy to express ideas such as \Move to

the ball", \If there are 2 teammates within 10m of the ball", etc.

Remember that the online coach receives visual information alway in left-hand

orientation, no matter which side its team plays on. Yet, when sending messages

to a team that plays on the right side, the coach must use right-hand orientation

in the messages. Transforming coordinates from left- to right-hand orientation is

done by negating them.

� UNUM SETS:

Unum sets are sets of player numbers. These are sets in the sense that order does

not matter and may be changed by the server. If 0 is included anywhere in the

set, then the set contains all players 1 - 11

Format: f NUM1 NUM2 . . . NUMn g

7.7.4. Syntax

The whole grammar of the standard coach language:

<MESSAGE> -> <INFO_MESS>

| <ADVICE_MESS>

99

7. The coach

| <META_MESS>

| <DEFINE_MESS>

| <FREEFORM_MESS>

#Advice and Info messages

<INFO_MESS> -> (info <TOKEN_LIST>)

<ADVICE_MESS> -> (advice <TOKEN_LIST>)

<TOKEN_LIST> -> <TOKEN_LIST> <TOKEN> | <TOKEN>

<TOKEN> -> (<TIME> <CONDITION> <DIRECTIVE_LIST>)

| (clear)

<CONDITION> -> (true)

| (false)

#the int's are the min/max number of players which must match

| (ppos <TEAM> <UNUM_SET> <INT> <INT> <REGION>)

| (bpos <REGION>)

| (bowner <TEAM> <UNUM_SET>)

| (pmode <PLAY_MODE>) |

| (and <CONDITION_LIST>) |

| (or <CONDITION_LIST>) |

| (not <CONDITION>)

| "STRING"

<CONDITION_LIST> -> <CONDITION_LIST> <CONDITION>

<DIRECTIVE_LIST> -> <DIRECTIVE_LIST> <DIRECTIVE> | <DIRECTIVE>

<DIRECTIVE> -> (do <TEAM> <UNUM_SET> <ACTION>) |

| (dont <TEAM> <UNUM_SET> <ACTION>)

| "STRING"

<ACTION> -> (pos <REGION>) |

| (home <REGION>) |

| (bto <REGION> <BMOVE_SET>) |

| (bto <UNUM_SET>) |

| (mark <UNUM_SET>) |

| (markl <UNUM_SET>) |

| (markl <REGION>) |

| (oline <REGION>) |

| (htype <HET_TYPE>)

| "STRING"

#Misc. bits of data

<PLAY_MODE> -> bko | time_over | play_on

| ko_our | ko_opp | ki_out | ki_opp | fk_our | fk_opp

| ck_our | ck_opp | gk_our | gk_opp | gc_our | gc_opp

| ag_our | ag_opp

<TIME> -> [int]

<HET_TYPE> -> [int] #0-based, -1 to clear knowledge

100

7.7. The standard coach language

<TEAM> -> our | opp

<UNUM> -> [int(0-11)]

<UNUM_SET> -> { <UNUM_LIST> }

<UNUM_LIST> -> <UNUM_LIST> <UNUM> | e #e here means epsilon,

i.e. the empty string

<BMOVE_SET> -> { <BMOVE_LIST> }

<BMOVE_LIST> -> <BMOVE_LIST> <BMOVE_TOKEN> | <BMOVE_TOKEN>

<BMOVE_TOKEN> -> p | d | c | s #pass dribble clear score; note

these do not need spaces between them

#Regions

<REGION> -> <POINT> |

| (null)

| (quad <POINT> <POINT> <POINT> <POINT>) |

| (arc <POINT> [real] [real] [real] [real]) |

#small radius, large radius, start angle, angle span

| (reg <REGION_LIST>)

| "STRING"

<REGION_LIST> -> <REGION_LIST> <REGION> | <REGION>

<POINT> -> (pt [real] [real]) #xcoord, ycoord

| (pt [real] [real] <POINT>)

| (pt ball)

| (pt <TEAM> <UNUM>)

#Meta messages

<META_MESS> -> (meta <META_TOKEN_LIST>)

<META_TOKEN_LIST> -> <META_TOKEN_LIST> <META_TOKEN> | <META_TOKEN>

<META_TOKEN> -> (ver [int])

#Define messages

<DEFINE_MESS> -> (define <DEFINE_TOKEN_LIST>)

<DEFINE_TOKEN_LIST> -> <DEFINE_TOKEN_LIST> <DEFINE_TOKEN>

| <DEFINE_TOKEN>

<DEFINE_TOKEN> -> <CONDITION_DEFINE>

| <DIRECTIVE_DEFINE>

| <REGION_DEFINE>

| <ACTION_DEFINE>

<CONDITION_DEFINE> -> (definec "[string]" <CONDITION>)

<DIRECTIVE_DEFINE> -> (defined "[string]" <DIRECTIVE>)

<REGION_DEFINE> -> (definer "[string]" <REGION>)

<ACTION_DEFINE> -> (definea "[string]" <ACTION>)

#Freeform messages

101

7. The coach

<FREEFORM_MESS> -> (freeform "[string]")

Parameter name Used

value

Default

value

Explanation

coach port 6001 6001 The port number the trainer connects to.

say msg size 512 256 Maximum length of a freeform message a

player, trainer, or coach can say.

say coach cnt max 128 128 Upper limit of freeform messages an online

coach can say

send vi step 100 100 Interval of online coach's look.

clang win size 100 100 Number of cycles that lie between online coach

messages

clang advice win 1 1 Number of advice messages that can be sent

in the aforementioned interval.

clang de�ne win 1 1 Number of de�ne messages that can be sent in

the aforementioned interval.

clang info win 1 1 Number of info messages that can be sent in

the aforementioned interval.

clang meta win 1 1 Number of meta messages that can be sent in

the aforementioned interval.

clang mess delay 50 50 Number of cycles messages from the online

coach will be delayed.

clang mess per cycle 1 1 Number of messages that will be sent to the

players during non-play on modes.

102

7.7. The standard coach language

From trainer to server From server to trainer

(init (version VERSION))

VERSION ::= a real number

trainer: (init ok)

(change mode PLAY MODE)

PLAY MODE ::= one of the play-modes

(ok change mode)

(error illegal mode)

(error illegal command form)

(move OBJECT X Y

[VDIR [DELTA X DELTA Y]])

OBJECT ::= One of object names

X ::= -52{52

Y ::= -32{32

VDIR ::= -180{180

DELTA X, DELTA Y ::= [
oat]

(ok move)

(error illegal object form)

(error illegal command form)

(check ball) (ok check ball TIME BPOS)

TIME ::= sim. time of server

BPOS ::= in �eld j

goal SIDE j

out of �eld

SIDE ::= l j r

(start) (ok start)

(recover) (ok recover)

(change player type

TEAM NAME UNUM

PLAYER TYPE)

TEAM NAME ::= string

UNUM ::= 1{11

PLAYER TYPE ::= 0{6

(warning no team found)

(error illegal command form)

(warning no such player)

(ok change player type

TEAM UNUM TYPE)

(ear MODE)

MODE ::= on j o�

(ok ear on)

(ok ear o�)

(error illegal mode)

(error illegal command form)

Table 7.1.: Trainer Interactions with the Server

103

7. The coach

From online coach to server From server to online coach

(init TEAMNAME

(version VERSION))

VERSION ::= a real number

TEAMNAME ::= string

(init SIDE ok)

SIDE ::= l j r

(change player type

UNUM PLAYER TYPE)

UNUM ::= 1{11

PLAYER TYPE ::= 0{6

(warning no team found)

(error illegal command form)

(warning no such player)

(ok change player type

TEAM UNUM TYPE)

(warning cannot sub while playon)

(warning no subs left)

(warning max of that type on �eld)

(warning cannot change goalie)

Table 7.2.: Online Coach Interactions with the Server

104

7.7. The standard coach language

From client to server From server to client

(say MESSAGE)

(see Section 7.4.2)

(ok say)

(error illegal command form)

(look) (ok look TIME

(OBJ1 OBJDESC1)

(OBJ2 OBJDESC2) . . .)

OBJj ::= object name

(see Section 4.3

OBJDESCj ::= X Y j

X Y DELTAx DELTAy j

X Y DELTAx DELTAy

BODYANG NECKANG

(eye MODE)

MODE ::= on j o�

(ok eye on)

(ok eye o�)

(error illegal mode)

(error illegal command form)

This message is sent automatically ev-

ery send vi step milliseconds when the

coach/trainer eye is on (see the \eye"

commands below).

(see global TIME

(OBJ1 OBJDESC1)

(OBJ2 OBJDESC2) . . .)

The trainer must use the `ear' command

to get these messages. The online coach

always gets these messages.
(hear TIME referee MESSAGE)

(hear TIME

(p "TEAMNAME" NUM)

"MESSAGE")

TIME ::= time message was sent

TEAMNAME ::= string

NUM ::= 1{11

MESSAGE ::= string

(team names) (ok team names

[(team l TEAMNAME1)

[(team r TEAMNAME2)]])

Table 7.3.: Server Interactions with Trainer/Coach
105

7. The coach

106

8. References and Further Reading

8.1. General papers

[1] Minoru Asada and Hiroaki Kitano, editors. RoboCup-98: Robot Soccer World Cup

II. LNAI 1604. Springer, Berlin, Heidelberg, New York, 1999.

[2] Hans-Dieter Burkhard, Markus Hannebauer, and Jan Wendler. AT Humboldt |

Development, Practice and Theory. In Hiroaki Kitano, editor, RoboCup-97: Robot

Soccer World Cup I, volume 1395 of Lecture Notes in Computer Science, pages

357{372. RoboCup Federation, Springer{Verlag, 1997.

[3] Silvia Coradeschi, Tucker Balch, Gerhard Kraetzschmar, and Peter Stone, editors.

Team Descriptions Simulation League RoboCup'99, Stockholm, Sweden, July 1999.

[4] John F. Kennedy. Urgent National Needs. Congressional Record { House (25 may

1961), 1961.

[5] Hiroaki Kitano, editor. Proceedings of the IROS-96 Workshop on RoboCup, Osaka,

Japan, November 1996.

[6] Hiroaki Kitano, editor. RoboCup-97: Robot Soccer World Cup I. Springer Verlag,

Berlin, 1998.

[7] Hiroaki Kitano, Minoru Asada, Yasou Kuniyoshi, Itsuki Noda, and Eiichi Osawa.

RoboCup: The Robot World Cup Initiative. In Proc. of IJCAI-95 Workshop on

Entertainment and AI/Alife, pages 19{24, 1995.

[8] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.

RoboCup: The robot world cup initiative. In W. Lewis Johnson and Barbara

Hayes-Roth, editors, Proceedings of the First International Conference on Au-

tonomous Agents (Agents '97), pages 340{347, New York, 5{8 1997. ACM Press.

[9] Stefan Lanser, Christoph Zierl, Olaf Munkelt, and Bernd Radig. MORAL - A

Vision-based Object Recognition System for Autonomous Mobile Systems. In 7th

International Conference on Computer Analysis of Images and Patterns, Kiel,

pages 33{41. Springer{Verlag, September 1997.

[10] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James Hendler. Co-

evolving Soccer Softbot Team Coordination with Genetic Programming. In Hiroaki

107

8. References and Further Reading

Kitano, editor, Proceedings of the RoboCup�97 Workshop at the 15th International

Joint Conference on Arti�cial Intelligence (IJCAI97), pages 115{118, 1997.

[11] Alan Mackworth. On Seeing Robots, chapter 1, pages 1{13. World Scienti�c Press,

1993.

[12] Itsuki Noda, Shoji Suzuki, Hitoshi Matsubara, Minoru Asada, and Hiroaki Kitano.

Overview of RoboCup-97. In Hiroaki Kitano, editor, RoboCup-97: Robot Soccer

World Cup I, pages 20{41. Springer{Verlag, 1997.

[13] The goals of RoboCup. by RoboCup Federation on http://www.robocup.org/

overview/22.html, 2000. Veri�ed on 12th February 2001.

[14] Peter Stone, Tucker Balch, and Gerhard Kraetszchmar, editors. RoboCup-2000:

Robot Soccer World Cup IV, Berlin, 2001. Springer Verlag. To appear.

8.2. Doctoral Theses

[15] Klaus Dorer. Motivation, Handlungskontrolle und Zielmanagement in autonomen

Agenten. PhD thesis, Albert-Ludwigs-Universit�at Freiburg, Freiburg, December

1999. (German only).

[16] Johan Kummeneje. RoboCup as a Means to Research, Education, and Dissemina-

tion. Ph. Lic. Thesis, March 2001. Department of Computer and Systems Sciences,

Stockholm University and the Royal Institute of Technology.

[17] Peter Stone. Layered Learning in Multi-Agent Systems. PhD thesis, School of

Computer Science, Carnegie Mellon University, December 1998.

8.3. Undergraduate and Master's Theses

[18] Fredrik Heintz. RoboSoc a System for Developing RoboCup Agents for Educational

Use. Master's thesis, IDA 00/26, Link�oping university, Sweden, March 2000.

[19] Jan Murray. My goal is my castle { Die h�oheren F�ahigkeiten eines RoboCup-

Agenten am Beispiel des Torwarts. Studienarbeit, Universit�at Koblenz-Landau,

Germany, March 1999. (German only).

[20] Jan Murray. Soccer Agents Think in UML. Diploma thesis, Universit�at Koblenz-

Landau, 2001.

[21] Oliver Obst. RoboLog: Eine deduktive Schnittstelle zum RoboCup Soccer Server.

Diploma thesis, Universit�at Koblenz-Landau, February 1999. (German only).

108

8.4. Platforms to start building team upon

8.4. Platforms to start building team upon

8.5. Education-related articles

8.6. Machine Learning

[22] Sebastian Buck and Martin A. Riedmiller. Learning situation dependent success

rates of actions in a robocup scenario. In Paci�c Rim International Conference on

Arti�cial Intelligence, page 809, 2000.

[23] Peter Stone. Layered Learning in Multiagent Systems: A Winning Approach to

Robotic Soccer. MIT Press, 2000.

8.7. Decision Making

[24] V.S. Subrahmanian, Piero Bonatti, J�urgen Dix, Thomas Eiter, Sarit Kraus, Fatma

Ozcan, and Robert Ross. Heterogeneous Agent Systems. MIT Press, Cambridge,

Massachusetts, 2000.

8.8. Other supporting documents

[25] Laws of the games. by FIFA on http://www.fifa.com, 2000. Veri�ed on 12th

February 2001.

[26] W.R. Stevens. UNIX Network Programming. Prentice Hall, 1990.

8.9. Team Descriptions

8.9.1. 1996

8.9.2. 1997

8.9.3. 1998

[27] Peter Stone, Manuela Veloso, and Patrick Riley. The CMUnited-98 Champion

Simulator Team. In Minoru Asada and Hiroaki Kitano, editors, RoboCup-98:

Robot Soccer World Cup II. RoboCup Federation, Springer{Verlag, 1998.

109

8. References and Further Reading

8.9.4. 1999

[28] Peter Stone, Manuela Veloso, and Patrick Riley. The CMUnited-99 Simulator

Team. In Silvia Coradeschi, Tucker Balch, Gerhard Kraetzschmar, and Peter

Stone, editors, Team Descriptions Simulation League RoboCup'99, pages 7{11.

RoboCup Federation, Link�oping University Electronic Press, 1999.

8.9.5. 2000

8.9.6. 2001

110

A. GNU Free Documentation License

Version 1.1, March 2000

Copyright © 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,

but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document

\free" in the sense of freedom: to assure everyone the e�ective freedom to copy and

redistribute it, with or without modifying it, either commercially or noncommercially.

Secondarily, this License preserves for the author and publisher a way to get credit for

their work, while not being considered responsible for modi�cations made by others.

This License is a kind of \copyleft", which means that derivative works of the doc-

ument must themselves be free in the same sense. It complements the GNU General

Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, be-

cause free software needs free documentation: a free program should come with manuals

providing the same freedoms that the software does. But this License is not limited to

software manuals; it can be used for any textual work, regardless of subject matter or

whether it is published as a printed book. We recommend this License principally for

works whose purpose is instruction or reference.

A.1. Applicability and De�nitions

This License applies to any manual or other work that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. The

\Document", below, refers to any such manual or work. Any member of the public is a

licensee, and is addressed as \you".

A \Modi�ed Version" of the Document means any work containing the Document

or a portion of it, either copied verbatim, or with modi�cations and/or translated into

another language.

A \Secondary Section" is a named appendix or a front-matter section of the Doc-

ument that deals exclusively with the relationship of the publishers or authors of the

111

A. GNU Free Documentation License

Document to the Document's overall subject (or to related matters) and contains noth-

ing that could fall directly within that overall subject. (For example, if the Document

is in part a textbook of mathematics, a Secondary Section may not explain any mathe-

matics.) The relationship could be a matter of historical connection with the subject or

with related matters, or of legal, commercial, philosophical, ethical or political position

regarding them.

The \Invariant Sections" are certain Secondary Sections whose titles are designated,

as being those of Invariant Sections, in the notice that says that the Document is released

under this License.

The \Cover Texts" are certain short passages of text that are listed, as Front-Cover

Texts or Back-Cover Texts, in the notice that says that the Document is released under

this License.

A \Transparent" copy of the Document means a machine-readable copy, represented

in a format whose speci�cation is available to the general public, whose contents can

be viewed and edited directly and straightforwardly with generic text editors or (for

images composed of pixels) generic paint programs or (for drawings) some widely avail-

able drawing editor, and that is suitable for input to text formatters or for automatic

translation to a variety of formats suitable for input to text formatters. A copy made

in an otherwise Transparent �le format whose markup has been designed to thwart or

discourage subsequent modi�cation by readers is not Transparent. A copy that is not

\Transparent" is called \Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without

markup, Texinfo input format, LATEX input format, SGML or XML using a publicly

available DTD, and standard-conforming simple HTML designed for human modi�ca-

tion. Opaque formats include PostScript, PDF, proprietary formats that can be read

and edited only by proprietary word processors, SGML or XML for which the DTD

and/or processing tools are not generally available, and the machine-generated HTML

produced by some word processors for output purposes only.

The \Title Page" means, for a printed book, the title page itself, plus such following

pages as are needed to hold, legibly, the material this License requires to appear in the

title page. For works in formats which do not have any title page as such, \Title Page"

means the text near the most prominent appearance of the work's title, preceding the

beginning of the body of the text.

A.2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or

noncommercially, provided that this License, the copyright notices, and the license notice

saying this License applies to the Document are reproduced in all copies, and that you

add no other conditions whatsoever to those of this License. You may not use technical

measures to obstruct or control the reading or further copying of the copies you make

or distribute. However, you may accept compensation in exchange for copies. If you

distribute a large enough number of copies you must also follow the conditions in section

112

A.3. Copying in Quantity

3.

You may also lend copies, under the same conditions stated above, and you may

publicly display copies.

A.3. Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Doc-

ument's license notice requires Cover Texts, you must enclose the copies in covers that

carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,

and Back-Cover Texts on the back cover. Both covers must also clearly and legibly

identify you as the publisher of these copies. The front cover must present the full title

with all words of the title equally prominent and visible. You may add other material on

the covers in addition. Copying with changes limited to the covers, as long as they pre-

serve the title of the Document and satisfy these conditions, can be treated as verbatim

copying in other respects.

If the required texts for either cover are too voluminous to �t legibly, you should put

the �rst ones listed (as many as �t reasonably) on the actual cover, and continue the

rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than

100, you must either include a machine-readable Transparent copy along with each

Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-

network location containing a complete Transparent copy of the Document, free of added

material, which the general network-using public has access to download anonymously

at no charge using public-standard network protocols. If you use the latter option, you

must take reasonably prudent steps, when you begin distribution of Opaque copies in

quantity, to ensure that this Transparent copy will remain thus accessible at the stated

location until at least one year after the last time you distribute an Opaque copy (directly

or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well

before redistributing any large number of copies, to give them a chance to provide you

with an updated version of the Document.

A.4. Modi�cations

You may copy and distribute a Modi�ed Version of the Document under the conditions

of sections 2 and 3 above, provided that you release the Modi�ed Version under precisely

this License, with the Modi�ed Version �lling the role of the Document, thus licensing

distribution and modi�cation of the Modi�ed Version to whoever possesses a copy of it.

In addition, you must do these things in the Modi�ed Version:

� Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

be listed in the History section of the Document). You may use the same title as

a previous version if the original publisher of that version gives permission.

113

A. GNU Free Documentation License

� List on the Title Page, as authors, one or more persons or entities responsible for

authorship of the modi�cations in the Modi�ed Version, together with at least �ve

of the principal authors of the Document (all of its principal authors, if it has less

than �ve).

� State on the Title page the name of the publisher of the Modi�ed Version, as the

publisher.

� Preserve all the copyright notices of the Document.

� Add an appropriate copyright notice for your modi�cations adjacent to the other

copyright notices.

� Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modi�ed Version under the terms of this License, in the form

shown in the Addendum below.

� Preserve in that license notice the full lists of Invariant Sections and required Cover

Texts given in the Document's license notice.

� Include an unaltered copy of this License.

� Preserve the section entitled \History", and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modi�ed Version as given

on the Title Page. If there is no section entitled \History" in the Document, create

one stating the title, year, authors, and publisher of the Document as given on its

Title Page, then add an item describing the Modi�ed Version as stated in the

previous sentence.

� Preserve the network location, if any, given in the Document for public access to

a Transparent copy of the Document, and likewise the network locations given in

the Document for previous versions it was based on. These may be placed in the

\History" section. You may omit a network location for a work that was published

at least four years before the Document itself, or if the original publisher of the

version it refers to gives permission.

� In any section entitled \Acknowledgements" or \Dedications", preserve the sec-

tion's title, and preserve in the section all the substance and tone of each of the

contributor acknowledgements and/or dedications given therein.

� Preserve all the Invariant Sections of the Document, unaltered in their text and

in their titles. Section numbers or the equivalent are not considered part of the

section titles.

� Delete any section entitled \Endorsements". Such a section may not be included

in the Modi�ed Version.

� Do not retitle any existing section as \Endorsements" or to con
ict in title with

any Invariant Section.

114

A.5. Combining Documents

If the Modi�ed Version includes new front-matter sections or appendices that qualify

as Secondary Sections and contain no material copied from the Document, you may at

your option designate some or all of these sections as invariant. To do this, add their

titles to the list of Invariant Sections in the Modi�ed Version's license notice. These

titles must be distinct from any other section titles.

You may add a section entitled \Endorsements", provided it contains nothing but

endorsements of your Modi�ed Version by various parties { for example, statements of

peer review or that the text has been approved by an organization as the authoritative

de�nition of a standard.

You may add a passage of up to �ve words as a Front-Cover Text, and a passage of up

to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modi�ed

Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be

added by (or through arrangements made by) any one entity. If the Document already

includes a cover text for the same cover, previously added by you or by arrangement

made by the same entity you are acting on behalf of, you may not add another; but you

may replace the old one, on explicit permission from the previous publisher that added

the old one.

The author(s) and publisher(s) of the Document do not by this License give per-

mission to use their names for publicity for or to assert or imply endorsement of any

Modi�ed Version.

A.5. Combining Documents

You may combine the Document with other documents released under this License,

under the terms de�ned in section 4 above for modi�ed versions, provided that you

include in the combination all of the Invariant Sections of all of the original documents,

unmodi�ed, and list them all as Invariant Sections of your combined work in its license

notice.

The combined work need only contain one copy of this License, and multiple identical

Invariant Sections may be replaced with a single copy. If there are multiple Invariant

Sections with the same name but di�erent contents, make the title of each such section

unique by adding at the end of it, in parentheses, the name of the original author or

publisher of that section if known, or else a unique number. Make the same adjustment

to the section titles in the list of Invariant Sections in the license notice of the combined

work.

In the combination, you must combine any sections entitled \History" in the various

original documents, forming one section entitled \History"; likewise combine any sections

entitled \Acknowledgements", and any sections entitled \Dedications". You must delete

all sections entitled \Endorsements."

115

A. GNU Free Documentation License

A.6. Collections of Documents

You may make a collection consisting of the Document and other documents released

under this License, and replace the individual copies of this License in the various docu-

ments with a single copy that is included in the collection, provided that you follow the

rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individ-

ually under this License, provided you insert a copy of this License into the extracted

document, and follow this License in all other respects regarding verbatim copying of

that document.

A.7. Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent

documents or works, in or on a volume of a storage or distribution medium, does not

as a whole count as a Modi�ed Version of the Document, provided no compilation

copyright is claimed for the compilation. Such a compilation is called an \aggregate",

and this License does not apply to the other self-contained works thus compiled with the

Document, on account of their being thus compiled, if they are not themselves derivative

works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-

ment, then if the Document is less than one quarter of the entire aggregate, the Docu-

ment's Cover Texts may be placed on covers that surround only the Document within

the aggregate. Otherwise they must appear on covers around the whole aggregate.

A.8. Translation

Translation is considered a kind of modi�cation, so you may distribute translations of the

Document under the terms of section 4. Replacing Invariant Sections with translations

requires special permission from their copyright holders, but you may include translations

of some or all Invariant Sections in addition to the original versions of these Invariant

Sections. You may include a translation of this License provided that you also include

the original English version of this License. In case of a disagreement between the

translation and the original English version of this License, the original English version

will prevail.

A.9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly

provided for under this License. Any other attempt to copy, modify, sublicense or

distribute the Document is void, and will automatically terminate your rights under

this License. However, parties who have received copies, or rights, from you under this

116

A.10. Future Revisions of This License

License will not have their licenses terminated so long as such parties remain in full

compliance.

A.10. Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-

umentation License from time to time. Such new versions will be similar in spirit to

the present version, but may di�er in detail to address new problems or concerns. See

http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-

ment speci�es that a particular numbered version of this License "or any later version"

applies to it, you have the option of following the terms and conditions either of that

speci�ed version or of any later version that has been published (not as a draft) by the

Free Software Foundation. If the Document does not specify a version number of this

License, you may choose any version ever published (not as a draft) by the Free Software

Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the

document and put the following copyright and license notices just after the title page:

Copyright© YEAR YOUR NAME. Permission is granted to copy, distribute

and/or modify this document under the terms of the GNU Free Documenta-

tion License, Version 1.1 or any later version published by the Free Software

Foundation; with the Invariant Sections being LIST THEIR TITLES, with

the Front-Cover Texts being LIST, and with the Back-Cover Texts being

LIST. A copy of the license is included in the section entitled \GNU Free

Documentation License".

If you have no Invariant Sections, write \with no Invariant Sections" instead of saying

which ones are invariant. If you have no Front-Cover Texts, write \no Front-Cover Texts"

instead of \Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend re-

leasing these examples in parallel under your choice of free software license, such as the

GNU General Public License, to permit their use in free software.

117

Index

(ObjName Direction), 25, 76

(ObjName Distance Direction [DistChange

DirChange [BodyFacingDir Head-

FacingDir]]), 75

(ObjName Distance Direction DistChange

DirChange, 25

(ObjName Distance Direction DistChange

DirChange BodyFacingDir Head-

FacingDir), 25

(ObjName Distance Direction), 25

(b), 76

(bye), 22, 72

(can't reconnect), 72

(catch CatchCount), 23, 25, 33

(catch Direction), 23, 73

(change view ChangeViewCount), 23, 25

(change view ChangeViewCount)), 33

(change view Width Quality), 23, 75

(dash DashCount), 23, 25, 33

(dash Power), 23, 73

(ear o�), 88

(ear on), 88

(error illegal command form), 23, 74

(error no more team or player), 22

(error no more team or player or goalie),

22, 71, 72

(error reconnect), 22, 72

(error unknown command), 23

(eye o�), 91

(eye on), 91

(f FlagInfo), 76

(f b 0), 29

(f c), 28

(f l b), 28

(f p l b), 28

(f r b 10), 29

(f t l 20), 29

(g Side), 76

(goal r), 28

(head angle HeadAngle), 23, 25

(head angle HeadDirection), 33

(hear Time Sender "Message"), 26

(hear Time Sender Message), 76

(init Side UniformNumber PlayMode),

71

(init Side Unum PlayMode), 22

(initTeamName [(version VerNum)] [(goalie)]),

22, 71

(kick KickCount), 23, 25, 33

(kick Power Direction), 23, 73

(l ...), 29

(look), 91

(move MoveCount), 23, 25, 33

(move X Y), 23, 74

(ok say), 74

(p [TeamName [Unum]]), 76

(player param Parameters . . .), 72

(player type id Parameters . . .), 72

(reconnect Side PlayMode), 72

(reconnect TeamName UniformNumber),

72

(reconnect TeamName Unum), 22

(say Message), 23, 74

(say SayCount), 23, 25, 33

(score Time OurScore OpponentScore),

75

(score), 23, 75

(see Time ObjInfo ObjInfo . . .), 75

(see global . . .), 91

(sense body), 23, 74

(server param Parameters . . .), 72

(speedAmountOfSpeed DirectionOfSpeed),

23, 25, 33

(stamina Stamina E�ort), 23, 25, 33

118

Index

(turn Moment), 23, 73

(turn TurnCount), 23, 25, 33

(turn neck Angle), 23, 74

(turn neck TurnNeckCount), 23, 25, 33

(view modeViewQuality ViewWidth), 33

-180, 25

-34, 23

-52.5, 23

52.5, 23

1, 22

11, 22

34, 23

180, 25

abort(), 83

assert, 83

audio cut dist, 26, 27, 43, 48, 74

B, 30

b, 30, 76

baccel max, 40

ball accel max, 42, 47

ball decay, 34, 41, 42, 47

ball rand, 34, 41, 42, 47

ball size, 42, 47

ball speed max, 41, 42, 47

ball weight, 47

catch, 13

catch ban cycle, 35, 36, 49

catch probability, 35, 36, 47

catchable area l, 35, 36, 47

catchable area w, 35, 36, 47

change player type, 90, 94

change player type . . . , 44

ckick margin, 48

clang advice win, 49

clang de�ne win, 48

clang info win, 49

clang mess delay, 49

clang mess per cycle, 49

clang meta win, 48

clang win size, 48

coach, 49

coach port, 48

coach w referee, 49

control radius, 47

dash, 33, 34, 36, 43, 44, 46

dash power rate, 34, 36, 38, 47

dash power rate delta max, 38

dash power rate delta min, 38

drop ball time, 48

edp, 36

e�ort, 37

e�ort dec, 38, 47

e�ort dec thr, 38, 47

e�ort inc, 38, 47

e�ort inc thr, 38, 47

e�ort max, 36, 38

e�ort max delta factor, 38

e�ort min, 36, 38, 47

e�ort min delta factor, 38

extra stamina, 38

extra stamina delta max, 36, 38

extra stamina delta min, 36, 38

F, 30

f, 30, 76

forbid kick o� o�side, 49

fullstate l, 49

fullstate r, 49

G, 30

g, 30, 76

goal width, 47

goalie, 25, 28

goalie max moves, 35, 36, 41, 42, 47

half time, 48

hear, 25, 74

hear decay, 26, 27, 43, 49

hear inc, 26, 27, 43, 49

hear max, 26, 27, 43, 49

high, 30, 33, 75

inertia moment, 43, 44, 48

inertia moment delta factor, 43, 44

119

Index

inertia value, 43

init, 73, 92

kick, 13, 34, 37, 44

kick power rate, 34, 42, 47

kick rand, 40, 42, 47

kick rand delta factor, 40, 42

kick rand factor l, 47

kick rand factor r, 47

kickable margin, 40, 42, 47

kickable margin delta max, 42

kickable margin delta min, 42

l, 71, 76

log �le, 49

log times, 49

low, 30, 33, 75

maxmoment, 23, 37, 42{44, 48

maxneckang, 44, 48, 74

maxneckmoment, 23, 44, 48

maxparam, 73

maxpower, 23, 36{38, 42, 47, 73

minmoment, 23, 37, 42{44, 48

minneckang, 44, 48, 74

minneckmoment, 23, 44, 48

minpower, 23, 36{38, 42, 48, 73

move, 12, 35, 41, 46, 91

narrow, 30, 33, 75

normal, 30, 33, 75

o�, 88, 91

o�side active area size, 49

o�side kick margin, 49

olcoach port, 48

old coach hear, 49

on, 88, 91

online coach l, 76

online coach left, 25, 26

online coach r, 76

online coach right, 25, 26

P, 30

p, 25, 28, 30, 76

player accel max, 37, 38, 47

player decay, 34, 37, 38, 43, 47

player decay delta max, 38, 43, 44

player decay delta min, 38, 43, 44

player rand, 34, 37, 38, 47

player size, 47

player speed max, 37, 38, 43, 47

player speed max delta max, 37, 38

player speed max delta min, 37, 38

player types, 44, 45

player weight, 47

port, 48

prand factor l, 47

prand factor r, 47

quantize step, 32, 48

quantize step dir, 48

quantize step dir team l, 48

quantize step dir team r, 48

quantize step dist l team l, 48

quantize step dist l team r, 48

quantize step dist team l, 48

quantize step dist team r, 48

quantize step l, 32, 48

r, 71, 76

record, 49

record log, 49

record messages, 49

record version, 49

recover dec, 38, 47

recover dec thr, 38, 47

recover min, 38, 47

recovery, 37

recv step, 48

referee, 25, 26, 76

replay, 49

say, 26, 41, 43, 74

say coach cnt max, 48

say coach msg size, 48

say msg size, 26, 41, 43, 48

score, 23, 98

see, 25, 27

self, 25, 26, 76

120

Index

send log, 49

send step, 48

send vi step, 49

sense body, 23, 25, 33

sense body step, 33, 48

sense step, 27, 29, 30, 32

simulator step, 48

slow down factor, 49

soccerserver, 25

stamina, 37

stamina inc max, 38, 47

stamina inc max delta factor, 38

stamina max, 36, 38, 47

start goal l, 49

start goal r, 49

subs max, 44, 45

team actuator noise, 47

team far length, 30{32

team too far length, 30{32

turn, 43, 44, 46

turn neck, 43, 44

unum far length, 30{32

unum too far length, 30{32

use o�side, 49

verbose, 49

view angle, 30, 31

view frequency, 30

view quality factor, 30

view width factor, 30

visible angle, 29, 30, 32, 48

visible distance, 30{32, 48

wide, 30, 33, 75

wind dir, 37, 38, 41, 42, 48

wind force, 37, 38, 41, 42, 48

wind none, 48

wind rand, 37, 38, 41, 42, 48

wind random, 48

121

