Wearable Computing

Teleseminar Ubiquitous Computing WS 2001 Albert-Ludwigs-University Freiburg Robert Adelmann

Overview

- Short introduction to Ubiquitous Computing
- Wearable computing
 - Vision
 - Technology
 - Applications
- Wearable vs. Ubiquitous Computing
- Testing of Wearable Computing

Ubiquitous Computing

- Visions of Mark Weiser:
 - Computers should become part of the environment
 - No Virtual Reality but Real Virtuality
 - Computers should learn the way of humans
 - The most profound technologies are those who disappear."

Evolution

■ Of the clock:

■ Of the computer:

Wearable Computing

Vision:

"A Wearable computer is a computer that is always with you, comfortable and easy to keep and use, and is as unobtrusive as clothing."

Defining characteristics

- Portable while operational
- Hands-free use
- Attention getting
- Always on
- Sensors to perceive state of environment
- Takes advantage of the user's context

The first wearable computer

- 1955 by Ed Thorp and Claude Shannon, Computer for use in modeling of chaotic phenomena.
- More specifically: for betting odds at roulette.
- Yielded an expected gain of +44% when betting on the most favored "octant".
- Cigarette pack sized analog device.
- Main input : clicking with toes.

Technology

The vision of wearable computing has many benefits, the question is, how realistic it is?

Todays systems are far away from the ideal wearable!

Hardware Requirements

- Cabling: Must be few, unobtrusive, flexible, save
- <u>Displays</u>: Must be small, unobtusive, have several configurations, high image quality
- I/Os: Must be easily switchable, accessible, easy to learn and use, alternative interfaces
- <u>Power:</u> Must drive multiple peripherals simultaneously, alternative sources
- Standard: Must conform to a standard desktop environment, incorporate industrie standard component

Displays

- Very important for the performance of a wearabel
- Two main kinds:
 - Common portable LCD's
 - Head mounted displays:

Input devices

- Ever tried to type on a normal keyboard while walking down the steet ...?
- Ability to access and control a wide range of different applications and products.
- Today, there exist mainly:
 - Language processing
 - Mobile variants of keyboard

Packaging Technology

- Modules should be integrated inside clothes
 - No impact on appearance
 - No impact on comfort

Complete systems

- Examples of published systems:
 - Xybernaut
 - IBM Wearable Thinkpad

V-1-----

5. November 2001

Navigator 2

Charmed product

Wearable Computing > Need for WC

Is there a need for WC?

- Wearble Computing could highly improve performance and communication, together with a <u>reduction</u> of stress and information overflow.
- Obvious need in the following domains:
 - Maintenance, repair
 - Construction, manufacturing
 - Fire fighters, police ,resque teams
 - Teaching, education
 - Disabled people, health sector

Applications

- Mediated and augmented reality
- Infomation access (context sensitive)
 - In museums, internet connection, ways plans, ...
- Managing personal data
 - Images, phone numbers, termins, ...
- Exploring and documentation
 - Room measurement, stocktracking, ...
- Military
 - Live satelite view, aiming ,flight, ...

Application Examples

■ KARMA (Knowledge-based Augmented Reality for Maintenance Assistance)

- Maintenance
- Construction
- Repair

Application Examples

■ MARS (Mobile Augemented Reality System)

Wearbale vs. Ubiquitous Computing

- Been posed as polar opposites even though they are often applied in very similar applications
- Problems with ubiquitous computing:
 - Privacy issues
 - Difficulty with personalized information
- Problems with wearble computing:
 - Localized information
 - Localized control (interfaces)
 - Resource management

Possible Solutions

- A combination of ubiquitous and wearable computing?
- HIVE distributed agents platform
 - Links programs running on wearble computers and "desktop computers"
 - Main abstactions are agents, that are:
 - Autonomous
 - Proactive
 - Self-describing
 - Able to interact
 - Mobile

Example Applications with Hive

Theme music

- Agent for playing cd:
- 1. Resource finding agent searches CD agent
- 2. Sending music url to CD agent. (privacy, personalization)
- 3. CD agent plays it or not (localized resources)

"Where's brad?" agent

- Agent for finding an person. (localized information):
- 1. Same resource finding agent. But now searching for agents associated with a person.
- Found person can decide which information to reveal (privacy, personalization)

Testing of wearables

- To understand the user interaction it is necessary to examine:
 - User's direct interaction
 - External context the user perceveives during interaction
- Evaluation sytems must:
 - collect both kind of data
 - have littel influence on user and wearable

Conclusions

Many potentional applications for wearables

- Not a completely new technology but:
 - Computers (Wearbles) as real helpers, not as burdens
 - Symbiosis of humans and computers
 - Still some new challenges

Wearable Computing Challenges

- Interface desing, packaging, communication architecture
- Aim of research: close the gap between the vision and reality

