
W3CAR
Teleseminar on E-Commerce

September 2001 – February 2002

Johannes Walch
Wolfgang Kiess

Emmanuel Castellani
Laurent Marchese

Université de Nice-Sophia Antipolis
IUP MIAGE

Universität Mannheim
Wirtschaftsinformatik

2

1 Summary
1 Summary... 2
2 Introduction... 3

2.1 Context.. 3
2.2 Target of the project .. 3

3 Architecture .. 3
3.1 Servers .. 4
3.2 Client... 4
3.3 Messaging ... 7

3.3.1 Message grammar .. 8
3.4 Cryptography... 8

4 Implementation ... 9
4.1 Product Environment ... 9
4.2 Software .. 9

4.2.1 Server .. 9
4.2.2 Client ... 9
4.2.3 External components.. 9
4.2.4 Additional files (non source-files) ...10

4.3 Hardware..11
4.3.1 Server ..11
4.3.2 PDA ...11

4.4 Changes in the design ...11
5 Experiences..11

5.1 IPAQ..11
5.1.1 JRE on IPAQ ..11
5.1.2 Porting the Program..12
5.1.3 WLAN connection..12

5.2 Classloader ...12
5.3 WebBrowser integration ...13
5.4 Games development ...13
5.5 Organization...13
5.6 Team communication ...14

6 Outlook..14
6.1 Krypto package ..14

7 Additional information ...15
7.1 Webpage ..15
7.2 Javadoc...15
7.3 Contact ...15

3

2 Introduction

2.1 Context
The w3car project was initially designed as a component of the Speed3 project, which is a
cooperation of DaimlerCrysler (DCX) and the MBDS degree in the Nice-Sophia-Antipolis
University. The goal of the DCX Speed3 project is to create a prototype of a UMTS car to be
demonstrated on the Monaco Telecom (MT) UMTS network.

2.2 Target of the project
The sub-project assigned to the Nice- Mannheim students can be called “IPAQ Entertainment
application” . It addresses the only part of the DCX demand that does not requires complex
technologies like Video servers or OSGI architecture : backseats entertainment applications.
The main goal of the project is then to build a Java application on the IPAQ Client that enables
the user to download and run leisure programs on the IPAQ.
The main focus of this study is to set up the client Application (mechanisms to download
programs over network) ; one simple game should be designed for an example.

3 Architecture
The system is implemented in the classical way of a n-layer architecture with game servers,
database, application server (which consists of a webserver with jsp and servlet engine) and
client.

Heré s the description of the architecture drawn in Figure 1 :

1) The webpage containing the list with all available games is generated out of the database
via JSP and shown in the browser on the IPAQ. The user selects a game by clicking on
the link. This leads to the call of a servlet which generates the XML-message which
contains the name and the URL of the game (the game can be on a different server, see 4).

2) The message is send to the MessageService on the IPAQ.
3) The message is passed to the Classloader
4) The Classloader retrieves the information out of the message, loads the jar file and unzips

it.
5) The main class with the start method is passed to the main window, the game is started.

4

Figure 1 : Overall architecture

3.1 Servers
The server consists of two parts, one for the dynamic creation of the webpages and the servlet
part, which produces the messages. The code in the JSP-page uses JDBC to connect to the
database and extract the information about the games. The generated HTML-page is then send
back to the client. When the users clicks on a link, a GET-request is posted back to the webserver
where it is processed by the servlet. It produces the message and sends it to the client via the
MessageService.

3.2 Client

In the following figure 2 you can see the class diagramm of the client application.

5

w3car.krypto

w3car.messaging

PrintWriter
(from io)

MainFrame
(from gui)

w3car.logging

Receiver

port : int = 0

Receiver()
messageArrived()
getPort()

(from loading)

1

1

1

1

IpackClassLoader

urlString : String
classpath : String
checkSignature : boolean = true

IpackClassLoader()
loadJar()
unzip()
loadClass()
getMyGame()

(from loading)

1

1

1

1

SignatureVerifier

publicKeyFilename : String = "pub.obj"

SignatureVerifier()
verifySignature()
verifySignature()

(from kry pto)

MessageService

DEFAULT_PORT : int = 9999
port : int

MessageService()
getInstance()
getInstance()
addMessageListener()
removeMessageListener()
sendMessage()
messageArrived()
shutdown()

(from mes saging)

-$__instanc e

11..* 11..*

Log gingService

filename : String = "log.txt"

LoggingService()
getInstance()
log()
log()

(from logging)

-$__instance

-pw

We have the primary class MainFrame, Receiver for receiving messages, w3car.messaging for
the messaging service (xml), w3car.krypto for the signature processing, IpackClassLoader for
downloading and executing the jar files and finally w3car.logging for our custom logging service.

Figure 2 : client architecture

6

 : MainFrame

 : Receiver

 : MessageService

getInstance ()

addMessageListener(IMessageListener)

When the MessageService is
instantiated, it starts a
Thread which listens on a
port for incoming messages.
When a message arrives, all
registered listeners are
notified of this event.

Figure 3 : client startup

The client starts the MainFrame class via its main()-Method. Here, a receiver is instantiated
which registers itself as a MessageListener at the MessageService. When a message arrives at the
MessageService, it is unmarshaled to a Java-Object and passed to the Receiver. The Receiver
then extracts the message and calls the IpackClassloader to load the Jar-file. The jar file is loaded,
verified against the signature (which can be found in the message), written to the classpath and
unpacked. The classloader creates an instance of the game class. The MainFrame then fetches the
reference to the newly created game class through the getMyGame method and loads the class.

 : MessageService : Receiver

 : IpackClassLoader

 : SignatureVerifier : MainFrame

: Game

messageArrived(Message)

messageArrived(Message)

loadJar(String, String)

[ok==true]unzip(String, String)

ok:=veri fySignature(String, byte[])

[ok==false]displayError()

displ ayError()

Unzip the files
into the ClassPath

[ok==true]newInstance()

G := g etMyGame()

setMyGame(G) start()

pict 4 : receiving a message

7

3.3 Messaging

IPFormatException

IPFormatExcept ion()
IPFormatExcept ion(msg : String)

(from mes sagi ng)

JAXBReceiver

port : int
run : boolean = true

JAXBReceiver(l istener : w3car.messaging.IMessageListener, port : int)
run() : void
shutdown() : void

(from messaging)

IMessageListener

messageArrived()

(from messaging)

-l istener

JAXBSender

JA XBS ender()
send(m essag e : w3car.m essag ing.M essag e) : voi d

(from messaging)

LoadUrlMessage

urlToBeLo aded : St ring
mai nc lass : Stri ng
si gnatu re : String

Loa dUrlMessa ge(ipAd ress : Strin g, port : in t)
setUrl(url : Stri ng) : void
getUrl() : S tring
setMainClassName(className : Stri ng) : voi d
getMain Cla ssName() : String
setSi gnatu re(signa ture : Stri ng) : void
getSignature() : Strin g

(from messaging)

Message

LOAD_URL_MESSAGE : int = 1
port : int
messageType : int

Message(ipAddress : String, port : int)
setMessageType(type : int) : void
getMessageType() : int
getPort() : int
getIpAddress() : java.net.InetAddress

(from mes sagi ng)

ISender

send()

(from messaging)

IReceiver

shutdown()

(from messaging)

MessageService

DEFA ULT_PORT : int = 9999
port : int

MessageS ervi ce(po rt : i nt)
getInstan ce(port : i nt) : Me ssageS ervi ce
getInstan ce() : MessageSe rvi ce
addMessage Listener(l istener : w3 car.me ssagi ng. IM essageLi stener) : voi d
rem oveM essa geListener(l istener : w3car.messag ing. IMessageLi stene r) : voi d
sen dMessage(message : w3car.messaging.Message) : void
messageA rrived(messag e : w3car.messag ing.Message) : void
shu tdown() : void

(from messaging)

-sender
-receiver

-$__instance
Messagin gExcept ion

MessagingException()
MessagingException(msg : String)

(from mes sagi ng)

T he messageServi ce
regi sters i tsel f as l ist ener of
the JAXBRecei ver so that i t i s
n oti fied when a me ssage
a rrives.

A message is
send using the
method defined
in the ISender
interface.

The MessageService is
implemented as singleton,
thus it can't be instantiated
directly. For getting access,
the getInstance() method
mus t be called.

pict 5 : client startup

We introduced a messaging API for the programmer so he can access it transparently regardless
of the underlying communication architecture. This API provides generic set and get methods for
every parameter of a given message type. Currently there is only one message type
“LoadUrlMessage” (see 4.3.1) implemented.
Through this methods the data is transferred to the underlying communications architecture
which can though be exchanged without changing the application. It is also required in the API
that the receiver side implements an event listener for the arrival of a message.

For our implementation, XML messaging using the CASTOR package which marshals Java
Objects into XML Strings is used. This implementation of the messaging API uses the parameters
it has received from its own set methods to call the JAXBSender method which transmits the data
to the other communication endpoint after converting it to a plain text XML String.
On the receiver side the XML String is then unmarshaled, the event listener gets alerted and can
access the transmitted data via the API´s get methods.

8

The transmission of the XML String via TCP/IP is implemented as a singleton Service which
always has a receiver and a sender listening on the fixed port 9999. The target address is
extracted from the http request.

3.3.1 Message grammar

This is a representation of the schema-grammar for a LoadUrlMessage. It is used to create valid
(in means of XML) String to be transmitted over TCP/IP socket connection.

3.4 Cryptography
The application provides the optional possibility to verify if the loaded jar file was correctly
signed by a trusted individual. This was motivated through the danger that probably malicious
code which presents itself in a harmless manner to the enduser (virus) could be executed on the
IPAQ.

The game developer needs to sign its jar files manually to make use of this service. For this
purpose we provide a tool w3carsigner.bat on the server.
It is called via the batch file w3carsigner.bat, the argument is the file which has to be signed. It
computes a signature using the DSA key in the w3carkey keystore, converts the byte[]
representation of the signature to a hex String and writes it to a file. The name of the file is
written to stdout. The signature files need to be installed with the jar files on the web server.

When the webserver tries to send a LoadUrlMessage to the client it tries to read the signature file
corresponding to the jar file. If it exists the signature String is extracted and transmitted in the
message.

As soon as the client receives a LoadUrlMessage it is checked if there is a valid signature in the
message and if yes it checks the signature against the downloaded jar file. For the moment there
is only a message on the console if the jar file is correctly signed or not. The game is loaded
anyway. It is left for further development to react accordingly e.g presenting a window with
different choices to the user. This was not fully implemented because of some problems with the
IPAQ JRE (see 7.1).

9

4 Implementation

4.1 Product Environment

4.2 Software

4.2.1 Server
Operating system Microsoft Windows 2000 Professional
JDK Sun Microsystems, Java 2 SDK Standard Edition v1.3.0_02
Webserver The Apache Foundation Apache HTTP Server 1.3.23
Servlet Engine The Apache Foundation Tomcat 4.02
Database MySQL 3.23.41 on Unix

4.2.2 Client
Operating system Windows CE 3.0
JRE Personal Java Runtime v1.1 Beta 1
Swing classes from jdk 1.3 imported and integrated with the JRE

4.2.3 External components
4.2.3.1 Castor 0.9.3
“Castor is an open source data binding framework for Java” (Castor webpage
http://castor.exolab.org) . In this project it was used to marshal message objects into XML via the
easy way of data binding, transmit them over the network as XML and unmarshal them on the
other end of the connection. With this tool it was possible to generate all the necessary classes for
the marshall ing and unmarshall ing out of an XML-schema, which makes it easy to change the
whole program just by changing the grammar and regenerate the XML-binding classes.

4.2.3.2 Xerces
Xerces is the XML-Parser used by Castor. It is an apache open source project, more information
can be found under http://xml.apache.org/xerces-j/index.html .

4.2.3.3 Browser
First we use a java bean naming IceBrowser. It is a complete webBrowser
(http://www.icesoft.no/ICEBrowser/). But because of some problems we finally use some code of
a simple webBrowser that we get on the java sun site.

10

4.2.4 Additional files (non source-files)
The additional files which are necessary for running the program contain configuration
information, the keys and signatures for the jar files and so on.

4.2.4.1 generateKey.bat
PURPOSE: a batch file containing the call to the JAVA KEYTOOL for the generation of the
keys necessary for the system (it contains some configuration information like the name for the
keystore, the algorithm to use)
ARGUMENTS: The keystore name and the password for it
LOCATION: on the computer where the signature should be produced and in the same
directory as the keystore (w3carkey)

4.2.4.2 message.xsd
The XML-schema grammar describing the format of a LoadUrlMessage. (see 4.3.1)

4.2.4.3 pub.obj
The serialized version of a public dsa key. If the full cryptographic packages are available on the
IPAQ, the keystore file “w3carkey” can be used for extracting the public key.
LOCATION : in the working directory of the JVM with which the signature should
be verified, the SignatureVerifier loads the key (this means in our case in the working directory
of the application)

4.2.4.4 w3carkey
The keystore file which contains the public and the private key for the signature, it was produced
with the java KEYTOOL with the arguments given in the generateKey file
LOCATION: in the directory where the w3carSigner batch file is executed,
the signer needs to open the file to retrieve the private key

4.2.4.5 w3carsigner.bat
A batch file for starting the w3carSigner (it needs to access the w3carkey keystore
to retrieve the private key)

4.2.4.6 Properties.txt
The property file is used to configure the application. It contains the following parameters:

classpath one directory in the classpath, this is the place where the Classloader puts the
jar file and the extracted classes (in the correct directory structure) on the client.

starturl this is the url which is seen first in the Browser of the application
browserheight The height of the Browser / application window, with this the application can

be easily adapted to bigger or smaller screens (other Palm devices, a laptop with
more space on the display,…)

browserwidth The width …
separator The character which separates the directories in a pathname String. This had to

be added due to the faulty implementation of Java on the IPAQ.

11

4.3 Hardware

4.3.1 Server
- Notebook Pentium III 650 MHz
- 256 MB RAM
- 802.11b compatible PCMCIA Wireless LAN Adapter

4.3.2 PDA
- Compaq IPAQ H3660, 64 MB Memory
- PCMCIA Expansion Pack
- 802.11b compatible PCMCIA Wireless LAN Adapter

4.4 Changes in the design
On of the major changes from the design to the implementation is the use of a XML data binding
framework based on JAXB instead of using SOAP, the industry standard for XML-
communication for the XML communication. This decision was taken due to the fact that SOAP
isn’ t the right protocol for our purpose. SOAP is designed for a request-response behavior
(although there is also a one way communication possible) for web services where the client
makes a response, a service is executed on the server and a response is delivered. The processing
logic for a SOAP message can be very complex and heavy, where in our case the message must
be processed on a palm device with very limited processing power and memory.
In the w3car communication, only lightweight content is transmitted (the address of the jar-file,
the name of the name class and in a later version a signature for the jar-file) from the server to the
client.

5 Experiences

5.1 IPAQ

5.1.1 JRE on IPAQ
Unfortunately the Java support for the target architecture (IPAQ running Windows CE 3.0) is
very poor. For production applications we would suggest a architecture with better Java support
(either Linux or a special Java OS).

Through some research on the world wide web we found two possibilities :

- Personal Java Runtime (Beta) from sun (development discontinued)
- Different OS than Windows CE 3.0 (Linux or Java OS)
- Insignia JEODE (commercial JRE)

Both JREs have Java support similar to early JDK 1.1.

What made the decision easy is that the integrated Browser classes are based on Swing. We
decided to use Personal Java Runtime because it was possible (with some effort) to port swing to

12

it. Swing uses no architecture specific code because it is a lightweight implementation on top of
AWT. All that needs to be done is pack all the necessary class files into a jar file and point the
classpath there. We decided not to install another OS with better Java support because there were
warning that the IPAQ might be rendered useless if something goes wrong. Due to the already
short time left we decided to take the chances.

5.1.2 Porting the Program
First we made several tests on the IPAQ with the different modules we planned to integrate with
the following results :

- XML communication libraries work
- Java applications on the IPAQ are very slow
- Swing worked but did not display everything correctly (esp. text using fonts)
- The Personal Java VM is not stable. It crashes the IPAQs Windows CE OS

regularly and also the USB connected laptop.

The application was developed on Windows PC running Jbuilder. From time to time the actual
version was uploaded to the IPAQ and tested for compliance. During the development process we
made the experience that developing an application for another architecture than the one your
Development Environment runs at is very complicated.

5.1.3 WLAN connection
We decided to use a simple network configuration for the demonstration of the project we could
duplicate at home for development. The IPAQ connects to the Server over a Standard WLAN
connection in peer-to-peer mode (ad-hoc).

5.1.3.1 Security

For security a 128bit WEP Encryption is used. This is not satisfactory for high security
applications because of some design flaws in the WEP Protocol. We choose it anyway because its
hardware support makes it fast and entertainment applications are not high security. If e.g.
payment has to be integrated in the system, a higher level SSL/TLS connection would be more
suitable.

5.1.3.2 Network configuration

The IPAQ and the PC used for demonstration have PCMCIA cards which make the wireless
connection to the university network. The server running the Servlets/JSPs is located in the
university of Nice. This setup was used to show the internet compatibility of the implementation.

5.2 Classloader

We use our own ClassLoader to download files located on different servers by giving an URL
address and the name of the game. The game is downloaded over HTTP and is
instantiated/initialized automatically.

13

The first implementation we did allowed us to download directly the game without saving it in
the file system by using a JarURLConnection. It was working very well but unfortunately the
Ipaq doesn’t support this class (only the JDK 1.1.8 is installed). So we decided to use an other
way to download the game: first we save it in the fileSystem by using this time a standard
URLConnection and second we unzip it into the classpath. Finally, the main class is instantiated.
We decided for it to use the simple method of the class Class : newInstance(). So, each game
must implement an empty constructor.

5.3 WebBrowser integration

To have a visual and dynamic way to get the .jar and the name of the game, we thought to use a
webbrowser. For this, we decide first to integrate a complete webbrowser with the IceBrowser
bean.
Before to have a problem with the integration in the IPAQ, we had a problem of conflict between
the webbrowser Classloader and our Classloader, exactly with the security manager of the
IceBrowser.
So we decided to use a simple webbrowser without Classloader. Indeed, we needed only to get
the URL and the name of the game to download.

5.4 Games development

The developer need the abstract class Games to develop his games which must extends this class.
The abstract class Games extend JPanel, so each game developed can be insert into our
MainFrame.
By using this system the developers must redefined all abstract method, so we are sure that all
games will have a method start() and a method stop().
So in our ClassLoader we have just to cast the class download into Games, without knowing
anything about it.

5.5 Organization
The specification of the project arrived quite late (end of november), thus there wasn’t any work
possible before the beginning of december 2001. The specification which arrived then was quite
different from the one originally established by the team: the initial plan intended a system for an
extended UMTS telemetry service in the car which can be used in breakdown situations to
establish an audio connection to the next garage and exchange telemetry data. This initial
specification can be viewed on the web page of the project.

14

5.6 Team communication
Our team communication was based on 2 technologies using the english languages:

- Video conferences
- EMail

Video conferences

Video conferencing was new to the team members so there were some difficulties in the
beginning, mostly understanding problems. This was due to the sometimes bad audio quality and
the use of foreign languages. Over the time everyone got used to the teleconferences and it
proved to be an important part of the communication. Very similar to a personal meeting we used
the teleconferences for general discussion and important decisions. Also the fixed time schedule
for the conferences provided some mandatory delivery dates helping everyone organizing their
work.

EMail

A mailing list including all the team members was set up to simplify the communication
Email communication worked good from the beginning because obviously everybody was used
to it. The main disadvantage of the Email communication is the large delay. The advantage is that
there is no need for everybody to be at a specific location, that it is more easy to understand
written foreign languages than spoken ones and the possibility to attach files illustrating what you
are trying to explain.

6 Outlook

6.1 Krypto package
The krypto package can be found in w3car.krypto.*. It contains three files, one for signing JAR
files, on for verifying these signatures and an additional tools class which is used for converting
between byte[] and hex-Strings.
The krypto package produces signatures for the JAR-files with a 1024 Bit DSA key. The problem
on the IPAQ is that the version of the JDK is 1.1 without the cryptographic packages
(java.security.*, sun.security.provider.*). There is a switch in the Properties file for the krypto
package, it must be switched to off for running it on the IPAQ.

15

7 Additional information

7.1 Webpage
http://w3car.nwe.de
The website is password protected. Use the following login data for access :

Username : w3car
Password : chrysler

The website contains the following things :

- Description of the project
- Contact information
- Downloadable source code ZIP file
- Protocols of the teleconferences
- Various documents and binary files related to the project

7.2 Javadoc
For all the classes, there is a javadoc available which ships together with the application. It´s
available at this url : http://w3car.nwe.de/javadoc/index.html

7.3 Contact

Johannes Walch j.walch@nwe.de
Wolfgang Kiess wolfgang.kiess@web.de
Emmanuel Castellani emmanuel_castellani@yahoo.fr
Laurent Marchese laurent_marchese@yahoo.fr

