W3CAR

Teleseminar on E-Commerce
September 2001 —February 2002

Johannes Walch
Wolfgang Kiess
Emmanuel Castellani
Laurent Marchese

Université de Nice-Sophia Antipolis Universitdt Mannheim
IUP MIAGE Wirtschaftsinformatik

1 Summary

B 110101072 PO PPUPPP 2
b2 1 | (o o (U o { o] 3
2.1 [0 1= 3
2.2 TAQEL Of TNE PIOJECE ...vvveeeeeeeeeeeeieeeteeeeeeeeeteeesesassssssssssssssssssessssssssssssssssasssssssssssssssssnsnnnns 3

T A (011 (=, (U (=R 3
3.1 S VL= £ 4
3.2 O 1T < | 4
TR T |V === o 11 1o S 7
331 M ESSA0E GFAIMIMALueeeiieeeirie it ee e et e eer e e e e e e s e e ee s bbb eeeesseres s bbb seeeeseresssaaanaeeeas 8

12 O Y/ 0] (0 | =10 1SS 8

S [0100 (=10 115101 (o] [9
4.1 [(010 (81 fl =\ 0 111 L 9
4.2 SOMIWAIE....ccceeeeeeeeeeeee e 9
4.2.1 = 7/ (IR 9
4.2.2 O [T 0L 9
4.2.3 (S 7= 0] 11010 11= | T 9
4.2.4 Additional files (NON SOUICE-TIIES) ...eeiiiiiiiiiiieieiee e 10

4.3 [F= 0 VAV 7= 11
4.3.1 s Y= (R 11
4.3.2 U 11

N @ 47 (0 (=N 1A 1SN0 (== | S 11

LT (0= 1= 110 SR 11
51 1 OO 11
5.11 o] 1 2N RO 11
5.1.2 POrting the PrOOIraMuvvveiiiiee ettt e e et e e e e e s e s s asbbareeeeeeeeas 12
5.1.3 VAT A AN N o0 10 T= ox £ o 1 RO 12

5.2 ClaSSIOAETcoeeeeeeeeeeeeeeeee 12
5.3 WEDBIOWSE INEEOIGLION ...vvvvveeeeeeeeeeeeeseeseeeeessssessssssssssssssssssesssssssssssssssssssssssssssssssssssnnns 13
5.4 GaMES AEVEIOPIMENLevvvveereeeereeereeeeeesessseseesssssssessssssssssssssssssssssssssssssssssssssrsssssssssssrsnns 13
55 (@0 = [([0 SRS 13
5.6 TEAM COMMUIICAIION ...vvvvvvrrerereereseeeessesssnsnns 14

L O U1 o o | 14
6.1 (SR 0 1(0 T 0= 6 = o | 14

AR Ao (o [{1010 7= T 01 (o)1 07= 41] o [, 15
0 VL= o0 = [R 15
A N - (V- o [T o TRRRTRRRTRRRRRRI 15
7.3 L0 (7= o A PTRR 15

2 Introduction

2.1 Context

The w3ca projed was initially designed as a cmponent of the Speed3 projed, which is a
cooperation of DaimlerCrysler (DCX) and the MBDS degree in the Nice-SophiaAntipolis
University. The goal of the DCX Speed3 projed is to create a prototype of a UMTS ca to be
demonstrated on the Monac Teleoom (MT) UMTS network.

2.2 Target of the project

The sub-projed assigned to the Nice- Mannheim students can be alled “IPAQ Entertainment
application”. It addresses the only part of the DCX demand that does not requires complex
technologies like Video servers or OSGI architedure : badkseats entertainment applicaions.

The main goal of the projed is then to build a Java goplication on the IPAQ Client that enables
the user to download and run leisure programs on the IPAQ.

The main focus of this gudy is to set up the client Applicaion (mechanisms to download
programs over network) ; one simple game should be designed for an example.

3 Architecture

The system is implemented in the classical way of a n-layer architecture with game servers,
database, application server (which consists of a webserver with jsp and servlet engine) and
client.

Here s the description of the achitedure drawn in Figure 1 :

1) The webpage mntaining the list with all available games is generated out of the database
via JSP and shown in the browser on the IPAQ. The user seleds a game by clicking on
the link. This leals to the @l of a servlet which generates the XML-message which
contains the name and the URL of the game (the game @n be on a different server, see4).

2) The message is send to the MessageService on the IPAQ.

3) The message is passd to the Classloader

4) The Clasdoader retrieves the information out of the message, loads the jar file and unzips
it.

5) The main class with the start method is passed to the main window, the game is garted.

SEIVErs

Javra Weh biro urser

Cormromtication
component

Tavra coded
Grarre application

Figure 1 : Overall architecture

3.1 Servers

The server consists of two parts, one for the dynamic creation of the webpages and the servlet
part, which produces the messages. The code in the JSP-page uses JDBC to connect to the
database and extract the information about the games. The generated HTML-page is then send
back to the client. When the users clicks on a link, a GET-request is posted back to the webserver
where it is processed by the servlet. It produces the message and sends it to the client via the
MessageService.

3.2 Client

In the following figure 2 you can see the class diagramm of the client application.

PrintWriter

(fromio)
wacar.logging T
Lay gingSenvce
(fromlogging)

#yfilename : String = "log.t¢"

w3car.messaging

MessageService

(from i
#yDEFAULT_PORT :int = 9999
®pport : int

MessageService()

]

#PLoggingSenvice() — |- - MainFrame
getinstance() 1 (romgu)
log()

*log() L

4\\\ N
-$ irpstanc«%
|
|
\
\
|
\
\
|
\
\
|
\
|
\
|
“‘ 1
\‘ Receiver
\‘ from loading)
\“ Tpport:int= 0
|
\“ *Recdver()
\‘ #*mes sageArived()
\‘ *getPort()
\
| 1
\
\‘
\
\
|
\
\
|
\
|
\
\
|
\
‘\
\‘ 1
\‘ IpackClassLoader
\
|

getinstance()
*getinstance()
*addMessageListener ()
*removeMessagelListener()
*sendMessage()

*messageArrived()
*shutdown()

=

-$_in fnce

(rom loading)

| & uriString : String
\

#yclasspath : String
#ycheckSignature : boolean = true

wa3car.krypto

SignatureVerifier

(from kry pto)
‘\‘ *|packClassLoader () *SignatureVerifier()
\ #%loadJar() verifySignature()
\‘ *unzip() \erifySignature()
\ *|0adClass() —
“‘ *getMyGame() ////
| —
| _—
\ ///
(I _—
-

Figure 2 : client architecture

We have the primary class MainFrame, Receiver for receiving messages, w3car.messaging for
the messaging service (xml), w3car.krypto for the signature processing, |packClassLoader for
downloading and executing the jar files and finally w3car.logging for our custom logging service.

. MainFrame

: MessageSenice

Figure 3: client startup

. Receiver

getinstance ()

addMessigeListener(lMesaageList‘ener) “

|

|

|
] ‘\

instantiated, it starts a
Thread which listens on a
port for incoming messages.
When a message arrives, all
registered listeners are
notified of this event.

u When the‘ MessageSenvice is AN
\
\
\
|

The client starts the MainFrame class via its main()-Method. Here, a receiver is instantiated
which registers itself as a Messagel istener at the MessageService. When a message arrives at the
MessageService, it is unmarshaled to a Java-Object and passed to the Receiver. The Receiver
then extracts the message and calls the | packClassloader to load the Jar-file. The jar file is loaded,
verified against the signature (which can be found in the message), written to the classpath and
unpacked. The classloader creates an instance of the game class. The MainFrame then fetches the
reference to the newly created game class through the getMyGame method and loads the class.

: MessageSenice : Receiver

‘ messageArrived(Message) ‘
<1 |

messageArrived(Message) ‘

. SignatureVerifier

: MainFrame

. IpackClassLoader

loadJar(String, String)

P—

ok=verifySignature(String, byte[],

[ok==false]displayError()

displayEmror()

[ok==true]unzip(String, String)

% Unzip the files
into the ClassPath ‘

m
|
|

[Al@:true]newlnslanceo

. Game

G :=getMyGame()

setMyGame(G)

[

pict 4 : receiving amessage

= \

|
|
|
|
|
|
|
]
|
|
|
|
|
|
\

3.3 Messaging

Message
(frommes sagi ng)
#LOAD_URL_MESSAGE :int=1
fyport : int

fymessageType : int

#Message(ipAddress : String, port : int)
%etMessageType(type : int) : void
%getMessageType() : int

%getPort() : int

%getipAddress) : java.net.InetAddress

i

LoadUrlMessage
(from messaging)

®puriToBeLoaded : Sting
fgmainclass: String
@ysignature : String

JAXBSender
(from messaging)

$JAXBS ender()
%send(message : w3car.messaging.Mesage) : void

ISender

A message is
send using the
method defined
in the ISender
interface.

(from messaging)

%send()
~ 7s\ender

\
\
\

JAXBReceiver
(from messaging)

&pport : int

Tarun : boolean = true

*JAXBReceiver(listener : w3car.messaging.IMessageListener, port : int)
%run() : void
Sshutdown () : void

O
IReceiver

(from messaging)

The messageSenice
registersitsel f as listener of
— ——|the JAXBReceiversothatitis
notified when a mesage
amives.

“JeceiV@shutdown()

MessageService
(from messaging)

‘LoadUrIMes&ige(ipAd ress: String, port: int)
®setUrl(ur : String) : void

%getUrl() : Sting
#setMainClassName(className : String) : void
%getMainClasName() : String
®setSignature(signature : String) : void
*getSignature() : String

MessagingException
(frommes saging)

#MessagingException()
%\ essagingException(msg : String)

L‘l
IPFormatException
(frommes saging)

%IPFormatException()
%IPFormatException(msg : String)

pict 5: client startup

@pDEFAULT_PORT : int = 9999

Byport : int

distener

#*VessageS ewicepott : int)
Sgetl nstance(port : int) : MessageSerice
%getinstance() : MessageSe Ivice

*hutdown(: void

%addMessage Listener(istener : w3 car. me saging. IM essageLi gener) : void
*removeMesagelistener(istener : w3car. messaging.IMessageListener) : void
*=ndMessage(message : w3car. messaging. Message) : void
*messageArived(message : w3car. messaging. Message) : void

O

IMessageListener

(from messaging)

®messageArrived()
-$__instance

The MessageService is
implemented as singleton,
thusit can't be instantiated
directly. For getting access,
the getinstance() method
must be called.

We introduced a messaging API for the programmer so he can aacess it transparently regardless
of the underlying communication architecure. This API provides generic set and get methods for
every parameter of a given message type. Currently there is only one message type
“LoadUrIMessage” (see4.3.1) implemented.
Through this methods the data is transferred to the underlying communications architecture
which can though be exchanged without changing the gplication. It is also required in the API
that the receiver side implements an event listener for the arival of a message.

For our implementation, XML messaging using the CASTOR padkage which marshals Java
Objedsinto XML Strings is used. This implementation of the messaging API uses the parameters
it has received from its own set methods to cdl the JAXBSender method which transmits the data
to the other communication endpoint after converting it to a plain text XML String.

On the receiver side the XML String is then unmarshaled, the event listener gets aerted and can
access the transmitted deta viathe API”’s get methods.

The transmission of the XML String via TCP/IP is implemented as a singleton Service which
always has a receiver and a sender listening on the fixed port 9999. The target address is
extracted from the http request.

3.3.1 Message grammar

“messagetype

“ipadress

—| header [%]—(—-H— =]

body [FH 13 [E “mainclass
.
.

jaxbmessage [%]—(—"'—E—

This is a representation of the schema-grammar for a LoadUrIMessage. It is used to create valid
(inmeans of XML) String to be transmitted over TCP/IP socket connection.

3.4 Cryptography

The application provides the optional possibility to verify if the loaded jar file was correctly
signed by atrusted individual. This was motivated through the danger that probably malicious
code which presents itself in a harmless manner to the enduser (virus) could be executed on the
IPAQ.

The game developer needs to sign its jar files manually to make use of this service. For this
purpose we provide atool w3carsigner.bat on the server.

It is called via the batch file w3carsigner.bat, the argument is the file which has to be signed. It
computes a signature using the DSA key in the w3carkey keystore, converts the byte|]
representation of the signature to a hex String and writes it to a file. The name of the file is
written to stdout. The signature files need to be installed with the jar files on the web server.

When the webserver tries to send a LoadUrIMessage to the client it tries to read the signature file
corresponding to the jar file. If it exists the signature String is extracted and transmitted in the

message.

As soon as the client receives a LoadUrIMessage it is checked if there is a valid signature in the
message and if yes it checks the signature against the downloaded jar file. For the moment there
is only a message on the console if the jar file is correctly signed or not. The game is loaded
anyway. It is left for further development to react accordingly e.g presenting a window with
different choices to the user. This was not fully implemented because of some problems with the
IPAQ JRE (see 7.1).

4 Implementation

4.1 Product Environment

4.2 Software

4.2.1 Server

Operating system | Microsoft Windows 2000Professional

JDK Sun Microsystems, Java 2 SDK Standard Edition v1.3.0 02
Webserver The Apache Foundation Apache HTTP Server 1.3.23
Servlet Engine The Apache Foundation Tomcat 4.02

Database MySQL 3.23.41 on Unix

4.2.2 Client

Operating system | Windows CE 3.0

JRE Personal Java Runtime v1.1 Beta 1

Swing classes from jdk 1.3 imported and integrated with the JRE

4.2.3 External components

4.2.3.1 Castor 0.9.3

“Castor is an open source data binding framework for Java” (Castor webpage
http://castor.exolab.org) . In this project it was used to marshal message objeds into XML viathe
easy way of data binding, transmit them over the network as XML and urmarshal them on the
other end of the connedion. With thistool it was possible to generate all the necessary classes for
the marshalling and unmarshalling out of an XML-schema, which makes it easy to change the
whole program just by changing the grammar and regenerate the XML-binding classes.

4.2.3.2 Xerces
Xerces isthe XML-Parser used by Castor. It is an apache open source projed, more information
can be found under http://xml.apache.org/xerces-j/index.html .

4.2.3.3 Browser

Firs we use a java bean naming IceBrowser. It is a @mplete webBrowser
(http://www.icesoft.no/l CEBrowser/). But becaise of some problems we finally use some ade of
asimple webBrowser that we get on the java sun site.

4.2.4 Additional files (non source-files)

The alditional files which are necessary for running the program contain configuration
information, the keys and signatures for the jar filesand so on.

4.2.4.1 generateKey.bat

PURPOSE: abatch file amntaining the all to the JAVA KEY TOOL for the generation of the
keys necessary for the system (it contains ©me nfiguration information like the name for the
keystore, the algorithm to use)

ARGUMENTS: The keystore name and the password for it

LOCATION: onthe computer where the signature should be produced and in the same

diredory asthe keystore (w3carkey)

4.2.4.2 message.xsd
The XML-schema grammar describing the format of a LoadUrIMessage. (see4.3.1)

4.2.4.3 pub.obj

The serialized version of a pulic dsa key. If the full cryptographic padkages are avail able on the
IPAQ, the keystore file “w3carkey” can be used for extracting the publdic key.

LOCATION : in the working direcory of the JVM with which the signature should

be verified, the SignatureVerifier loads the key (this means in our case in the working diredory
of the gplication)

4.2.4.4 w3carkey

The keystore file which contains the public and the private key for the signature, it was produced
with the java KEY TOOL with the aguments given in the generateKey file

LOCATION: in the diredory where the w3carSigner batch file is exeauted,

the signer needs to open the file to retrieve the private key

4.2.4.5 w3carsigner.bat
A batch file for starting the w3carSigner (it needs to accessthe w3carkey keystore
to retrieve the private key)

4.2.4.6 Properties.txt
The property file is used to configure the goplication. It contains the following parameters:

classpath one diredory in the classpath, this is the placewhere the Classloader puts the
jar file and the extraded classes (in the @rrect diredory structure) on the client.
starturl thisisthe url which is ®en first in the Browser of the gplicaion

browserheight | The height of the Browser / applicaion window, with this the gplicaion can
be easily adapted to bhigger or smaller screens (other Palm devices, a laptop with
more spaceon the display,...)

browserwidth | Thewidth ...

Separator The charader which separates the diredories in a pathname String. This had to
be alded due to the faulty implementation of Java on the IPAQ.

10

4.3 Hardware

4.3.1 Server

- Notebook Pentium 11l 650 MHz
- 256 MB RAM
- 80211b compatible PCMCIA Wireless LAN Adapter

4.3.2 PDA

- Compag IPAQ H366Q 64 MB Memory
- PCMCIA Expansion Pack
- 80211b compatible PCMCIA Wireless LAN Adapter

4.4 Changes in the design

On of the major changes from the design to the implementation is the use of a XML data binding
framework based on JAXB instead of using SOAP, the industry standard for XML-
communicaion for the XML communication. This decision was taken due to the fact that SOAP
isn't the right protocol for our purpose. SOAP is designed for a request-response behavior
(although there is also a one way communication possible) for web services where the client
makes a response, a service is exeauted on the server and a response is delivered. The processing
logic for a SOAP message can be very complex and heavy, where in our case the message must
be processed on a palm devicewith very limited processing power and memory.

In the w3car communication, only lightweight content is transmitted (the aldressof the jar-file,
the name of the name classand in a later version a signature for the jar-file) from the server to the
client.

5 Experiences

5.1 IPAQ

5.1.1 JRE on IPAQ

Unfortunately the Java support for the target architecure (IPAQ running Windows CE 3.0) is
very poor. For production applicaions we would suggest a achitedure with better Java support
(either Linux or a spedal Java OS).

Through some research on the world wide web we found two possibilities :
- Personal Java Runtime (Beta) from sun (development discontinued)
- Different OS than Windows CE 3.0 (Linux or Java OS)
- Insignia JEODE (commercial JRE)

Both JREs have Java support similar to ealy JDK 1.1.

What made the decision easy is that the integrated Browser classes are based on Swing. We
decided to use Personal Java Runtime because it was possible (with some effort) to port swing to

11

it. Swing uses no architecture specific code because it is a lightweight implementation on top of
AWT. All that needs to be done is pack all the necessary class files into a jar file and point the
classpath there. We decided not to install another OS with better Java support because there were
warning that the IPAQ might be rendered useless if something goes wrong. Due to the aready
short time left we decided to take the chances.

5.1.2 Porting the Program

First we made several tests on the IPAQ with the different modules we planned to integrate with
the following results :

- XML communication libraries work

- Javaapplications on the IPAQ are very slow

- Swing worked but did not display everything correctly (esp. text using fonts)

- The Persona Java VM is not stable. It crashes the IPAQs Windows CE OS
regularly and also the USB connected laptop.

The application was developed on Windows PC running Jbuilder. From time to time the actual
version was uploaded to the IPAQ and tested for compliance. During the development process we
made the experience that developing an application for another architecture than the one your
Development Environment runs at is very complicated.

5.1.3 WLAN connection
We decided to use a simple network configuration for the demonstration of the project we could

duplicate at home for development. The IPAQ connects to the Server over a Standard WLAN
connection in peer-to-peer mode (ad-hoc).

5.1.3.1 Security

For security a 128bit WEP Encryption is used. This is not satisfactory for high security
applications because of some design flaws in the WEP Protocol. We choose it anyway because its
hardware support makes it fast and entertainment applications are not high security. If eg.
payment has to be integrated in the system, a higher level SSL/TLS connection would be more
suitable.

5.1.3.2 Network configuration
The IPAQ and the PC used for demonstration have PCMCIA cards which make the wireless

connection to the university network. The server running the Servlets/JSPs is located in the
university of Nice. This setup was used to show the internet compatibility of the implementation.

5.2 Classloader

We use our own ClassLoader to download files located on different servers by giving an URL
address and the name of the game. The game is downloaded over HTTP and is
instantiated/initialized automatically.

12

The first implementation we did allowed us to download dredly the game without saving it in
the file system by using a JarURL Connedion. It was working very well but unfortunately the
Ipaq doesn’t support this class (only the JDK 1.1.8 is ingtalled). So we dedded to use an other
way to download the game: first we save it in the fileSystem by using this time a standard
URL Connedion and second we unzip it into the classpath. Finally, the main class is instantiated.
We decided for it to use the simple method of the dass Class : newlnstance(). So, ead game
must implement an empty constructor.

5.3 WebBrowser integration

To have avisual and dynamic way to get the .jar and the name of the game, we thought to use a
webbrowser. For this, we decide first to integrate acomplete webbrowser with the IceBrowser
bean.

Before to have aproblem with the integration in the IPAQ, we had a problem of conflict between
the webbrowser Clasdoader and our Classloader, exadly with the seaurity manager of the
|ceBrowser.

So we dedded to use asimple webbrowser without Classloader. Indeed, we needed only to get
the URL and the name of the game to download.

5.4 Games development

The developer need the astrad classGames to develop his games which must extends this class.
The astrad classGames extend JPanel, so eat game developed can be insert into our
MainFrame.

By using this system the developers must redefined all abstrad method, so we are sure that all
games will have amethod start() and a method stop().

So in our ClassLoader we have just to cast the classdownload into Games, without knowing
anything about it.

5.5 Organization

The specification of the projed arrived quite late (end of november), thus there wasn't any work
possible before the beginning of december 2001 The specification which arrived then was quite
different from the one originally established by the team: the initial plan intended a system for an
extended UMTS telemetry service in the ca which can be used in breskdown situations to
establish an audio connedion to the next garage and exchange telemetry data. This initial
specification can be viewed on the web page of the project.

13

5.6 Team communication
Our team communication was based on 2 technologies using the english languages:

- Video conferences
- EMail

Video conferences

Video conferencing was new to the team members so there were some difficulties in the
beginning, mostly understanding problems. This was due to the sometimes bad audio quality and
the use of foreign languages. Over the time everyone got used to the teleconferences and it
proved to be an important part of the communication. Very similar to a personal meeting we used
the teleconferences for general discussion and important decisions. Also the fixed time schedule
for the conferences provided some mandatory delivery dates helping everyone organizing their
work.

EMail

A mailing list including all the team members was set up to simplify the communication

Email communication worked good from the beginning because obviously everybody was used
to it. The main disadvantage of the Email communication isthe large delay. The advantage is that
there is no need for everybody to be at a specific location, that it is more easy to understand
written foreign languages than spoken ones and the possibility to attach files illustrating what you
aretrying to explain.

6 Outlook

6.1 Krypto package

The krypto package can be found in w3car.krypto.*. It contains three files, one for signing JAR
files, on for verifying these signatures and an additional tools class which is used for converting
between byte[] and hex-Strings.

The krypto package produces signatures for the JAR-files with a 1024 Bit DSA key. The problem
on the IPAQ is that the version of the JDK is 1.1 without the cryptographic packages
(java.security.*, sun.security.provider.*). There is a switch in the Properties file for the krypto
package, it must be switched to off for running it on the IPAQ.

14

7 Additional information

7.1 Webpage

http://w3ca.nwe.de
The website is passvord protected. Use the following login data for access:

Username : w3car
Passvord : chrysler

The website mntains the following things :

- Description of the project

- Contad information

- Downloadable source code ZIP file

- Protocols of the teleconferences

- Various documents and hinary filesrelated to the projed

7.2 Javadoc

For al the classs, there is a javadoc available which ships together with the gplication. It's
available & thisurl : http://w3car.nwe.de/javadoc/index.html

7.3 Contact

Johannes Walch j.walch@nwe.de
Wolfgang Kiess wolfgang.kiess@web.de
Emmanuel Castellani emmanuel _castellani@yahoo.fr
Laurent Marchese laurent_marchese@yahoo.fr

15

