w3auction

an online auction tool for wireless devices

Final Report
Teleseminar Nice-Mannheim
Winter Semester 2001 / 2002

Vanessa Bouchet, Lars Klose, Heiko Kopitzki,
Annabelle Le Sonn, Dorothée Robert, Gunnar Wiedenfels

CONTENT

A B ST R A C T ittt e e - 5
2ARCHITECTURE OF THE AUCTION SYSTEM ..o e eae 7
2.1 OVERALL ARCHITECTURE «.ututututet e te e etasasaeasase e saeasaeae e e et eme e e enrneneaeaeanaes 7
2.2 ARCHITECTURE OF THE AUCTION SERVER ..« e tttttettataeae et teamaeaeee e enenaaeaeaeanees 8
2.3 ARCHITECTURE OF THE AUCTION CLIENT S 1t e ttutuinetietttneneeeeeiaemaeeneerearasnenenrereaens 9
O Y O S O =SSR 9
2.4, 0 USEE Cl BN . eeeeeieeee et e s 10
A N (1011 W O T o | SRR 11
2.4.3 SEIVEL AQMUN <.t 11

S LM PLE M ENT AT IO N ..ottt ettt et ettt et et e e e e e e e e e e e e e e enaeae 12
3.1 SYSTEM ENVIRONMENT . ueueneee ettt ettt ettt eeae e e e e e e e aeae e e ea e e earmeeenen e eaeaeneanaeanaens 12
3.1.1 Personal Diglital ASSISEANT eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeesenennnennennnnnnnnnnns 12
BT 2 - Y T 12
3.1L.3WIrel€SS COMMUNICALION ... oottt e e e e e e e e e e e 13
3.1.4 INTENEL CONNECLIVITY ...eeeeeeeeee e ettt e e e e e e e e et e e e e e e e e e e e e eeeas 13
305 O AL NG SV S EIMIS ..ttt e e et e e e e e e e e e e e e e e 14

3.2 SOFTWARE STRUGCTURE . .ututee ettt et e ae e aeaesaeasaeaeae e et ta e earmreen e aaeasaearaeanaens 14
I S Y TR 14
3.2, 2 L NS, et ——————— 16
3.2.3 COMMUNICALION PrOtOCOottt 18

3.3 GRAPHICAL USER INTERFACES e tutttt ettt et ettt eeeeeee e et e e e e e e e e e e e e araeeaeaearnanns 19
3.3.1 User Client and Admin CHENt GUIveeeeeeeeeeeeeeee et 19
ORI S Y = B 1 U TR 20

3.4 DATABASE M ANAGEMENT SYSTEM +uvteiuiuittae et e e e e eaeaeaeaeae e e reanaenenes 20
3. VW RELESSL AN .ottt e e et e et ee e e 21
4 E X PERIENCE ... oo e e e et 22
4.1 EXPERIENCE WITH EARLY USERS. . u e ettt ettt et e e e e e e e e e e eaea e aeaeann 22
A2 IMPLEMENTER SEXPERIENCE & 1eueueeetstntataeataeae e teesasaeae e e eaeaeaeanaenenenearaeanees 22
5. CONCLUSION AND QUTL OOK ..ttt eee e et a e ea e e raa e aenenas 23
REFE R EIN CES ... i e e e e et e e et r e eaes 23

Abstract

As handheld devices like personal digital asgstants (PDAS) are becoming very popular, prices
are dropping, and in addition an overall trend to wireless communications can be observed,
this project tries to take advantage of these future developments. Its goal isto design and im-
plement atool to support wirelessauctions on PDAS, either in alocal scenario or on the Inter-
net, worldwide. However, by making wse of the system independent, Java Tednology, the
result isn’'t even limited to PDAS, but may also be used on notebooks or regular PCs, with or
without wirelesscommunicaion. and is therefore to be cncerned avery flexible tool.

Concerning auctioning on the Internet, this tool tries to combine alrealy existing and avail-
able technology, with the common image of what real-time auctioning is. We'd like to men-
tion two examples. The widespread Internet company EBay, which provides a platform to buy
and sell personal goods at auctions, and the famous English auctioneas Sotheby’s. This lu-
tion combines these different approaches and makes it posshle to participate in a real-time
auction, with all the thrill and competition that comes with.

In addition this system beas in mind the general concept of auctioning, by providing differ-
ent algorithms which will make it possible for the user to run specialized auctions which fit
best his personal taste or the goodsto be sold.

1 Introduction

This paper is part of the software projea “W3A — World Wide Web Auctioning’. It gives an
overview about this projed, the development process and the resulting software. However,
this is no complete reference and therefore should be read in combination with other docu-
ments which go further into detail.

This oftware projed was part of a Joint Seminar and Telellaboration Projed On Electronic
Commerce (in short: Teleseminar). Participating members are the Universities of Nice-Sophia
Antipolis (France) and Mannheim (Germany), as well as Accenture & an industrial sponsor. It
combines the efforts of studentsin both countries by providing the posshility of videoconfer-
encing over the Internet, forcing both sides to communicae in English as a foreign language.
It is a step forward to provide an international experience for students of both universities, as
well as experiencein adistributed team. Seealso [1].

Users of our software shall be able to participate in auctions in locds senarios as well as in
auctions world wide by connedion through the Internet. The software is gecialized for the
use on portable handheld devices which are mwnneded by wireless communication (several
clients using one server which is conneded to the Internet).

The main auction scenario is smewhere in the middle between a traditional “live” auction
and Internet auctions, such as EBay: the participants are all in one room, but they submit their
bids “live” using their PDAs (Personal Digital Asgstants).

2 Architecture of the Auction System

2.1 Overall architecture

The system is based on a server client architedure: The server has the control over the system.
It takes care of adive elements like user connedions and auction handling, and uses a rela-
tional database management system to keep track of user and auction dataThere eist two
types of clients, user clients and an administrator client. The user clients supports the role of
auction participants, who may take part in auctions, but may also creae their own auctions in
case of an open Internet scenario.

The aministrator client is a special client reserved for the aministrator. It enables him to
control the server from a remote location. This is the only way foreseen for the server to be
managed. It’s true that a server console exists, but its functionality is limited to starting and
stopping the server as well as loading auction algorithms and some other basic options.

Communicaion between the server and the clients is done through an appropriate proprietary
protocol, which is based on the exchange of simple message blocks, so cdled PDUs (Protocol
Data Units). It operates over TCP/IP. Figure 1 presents an overview for the system architec-
ture. Grey blocks represent physicd host systems.

Server

Database

<<Application>> -
Server /%

Server Admin

1

1*

User Client | ' Admin Client

<<Application>> <<Application>>
Interface User Interface Admin
Client Client \

) i

Admin Client
User Client

Figure 1 System Architecture Overview

2.2 Architecture of the Auction Server

The server architecture of the server is based on the following concepts: It exists a core mod-

ule, that manages the cooperation of the other components:

. the DataStore which keeps the connection with the database and provides a general data-
base interface which depends in its structure on the actual database. This allows us to use
any kind of database by simply reimplementing this part.

an auction spooler which manages the upcoming and current auctions, by constantly
checking the database for scheduled auctions. If an auction is to be started, the spooler
will start a new instance of the appropriate algorithm, which from there on manages the
auction.

a communication thread which is always waiting for new connections from users logging
on. It will create a new independent connection thread for every new incoming user. It
takes the socket of the client as parameter and from thereon is responsible for the sending
and receiving of message packets.

a Userlnput which takes care of possible manual input by the server administrator. This
input is restricted to basic operations like to start or stop the server.

Figure 2 gives an overview of the architecture of the auction server.

Auction

Spooler :
Ty Communicator
-7
% DataStore Core
PN
Userlnput

Figure 2 Server Architecture

2.3 Architecture of the Auction Clients

Similar to the server, the clients are based on a core module which manages the communica-
tion between edge modules. The user and the administration client bare the same architecture.
The client may be seen as a simple translator between the server and the human user.

The edge modules are:

- the Communicator, which sends and receives messages to and from the server.

- the ClientGUI, the interface for receiving input by the user and presenting the data received
by the server.

Figure 3 presents the client architecture.

E Communicator Core % ClientGUI
77777 - T~

Figure 3 Client Architecture

2.4 UML Use Cases

Modern software engineering technology was used throughout this project: Object-oriented
analysis and design, object-oriented programming, and UML as the specification language.

In Figure 4, an overview the use cases for this software project are presented. For reasons of
place and time, only an overview is given.

e e s]
- i ; i
| b= i) { s
" r’ " - e —
- -~ ZcpuiEnd== o S—
St The Serve Bel Up FrooeesiUsar Ranuet ClierUsar
y [i B { }
£ e O pentStariBiapiabont Suclion-. T
] =T Lpadinload Addiional Algarihm ——— ==inghude== connes
i i T e,
e o Sl N o [11=E] - ¥
T e User Entersiesves/is Expslied e e)
Serseradmin i (TR S "’-.'i."e' B TR, sincludezz. TR i o
B e e T iae s s AR o SURA /
e i T 7
o = " A T) .
. Stop The Server S s sinludus: _ Send Unazked Message - Otiant
=, .-rn.lnmz.fuurt.m. AR ezincludés= I = 3 .-
) ; — i P - LY
. 1 L5 s i e Mt
Shirs GLI B Accaples Dizconnect
o frE— i
)| | I =
¥ ey _a-'f ~
=5 T [
Synchontze Process Admin Reguest cliartAdmin

Figure 4 Use Case Diagrams—All Users

2.4.1 User Client

Before having the possbility to interad with the system, the user client needs to conned to
the server, by specifying an IP addressand a port (socket). If the connedion succedds, it is
registered in the list of adive mwnnedions by the server.

After logging in, the user can exeaute the following basic functions:
- Hel/she may change his personal settings: the aurrent data is retrieved from the database and
presented to the user. Then he/she an modify the entries, which are then stored again in the
database. He/she may creae auctions: The system provides sveral different auctioning algo-
rithms from which the user can choose one. Depending on the dgorithm, he/she must provide
specific options. For example for an English auction, one must provide

o anauction name

o a cdegory (eg., “cas’ for aMercedes)

o the start price (the minimum bid)

o the step (defines the minimum differencein money between two hids)

o adtart date and time
In addition he/she aan provide optional data:

o adescription of the item

o animage of the objeda (by providing the URL of afile containing the photo)

o further information which may concern the type of payment etc.
- auctions can also be searched for, by spedfying one or several of the following options:

o name or the part of the name of anitem

o a cdegory

o the status (upcoming, current, open, etc.)

o Start date

o thebuyer or seller.
After having seached for auctions, all auctions can be cnsulted with their details, and auc-
tions which are already ongoing can immediately be entered.
After having entered an auction, the user may participate by bidding and looking at the result
until the auction is finished.

10

2.4.2 Admin Client

The administrator connects to the server by a specialized client, the administrator client.

He/she needs to give an administrator password to authenticate himself as a valid administra-

tor client. As can be seen in Figure 4 he/she has the choice to manage all major fields of the

server, including:

* auction management: auctions can be deleted (the decision whether an ongoing auction
needs to be deleted is based solely on the opinion of the administrator)

= user management: user accounts can be looked up in the database, modified and even de-
leted

= eror log management: viewing and changing the log file the system maintains to keep
track of errors and other necessary information

= connection management: to manage all users who are connected at that moment to the
system.

2.4.3 Server Admin

The Server Admin is the person who is physically present at the site of the server. He is not
necessarily different from an administrator who connects from distance. In contrast to an ad-
ministrator client, this interface is generally not intended to manage the system itself, but to
fulfil basic operations like to start the server, stop the server and to load or unload auction
algorithms.

Manage Algorithms Manage server
Ak A
T N N ‘\\\ B)
Load Algorithm Unload Algorithm Start the server N

Stop the server

Figure 5 Use Cases— Server Admin

When the server is stopped, it is shutdown safely to prevent data loss or inconsistency: auc-
tions are closed, connections are detached, the communication with the database is stopped
and safely disconnected.

When the server is started, various options must be entered:

11

» Scenario: It must be specified if the server is intended to manage a local or an Internet
scenario, influencing the possibility for all usersto create auctions or only one given user.

* Port: the TCP port for incoming connections.

» Maximum number of simultaneous connections. The number of connections the server
will allow in parallel

* Link to the database: The administrator must specify a file that contains all necessary in-
formation to connect to the JDBC database on the (possibly remote) host

= Debuglogfile: A filethat takes all error outputs produced by the system

» Additional algorithms: The system disposes of several built-in auctioning algorithms. The
administrator may add new algorithms at start-up time.

» Optional GUI: Although not further supported, an optional GUI may be started with the
server to display debugging information directly on the server machine.

3. Implementation

3.1 System Environment
3.1.1 Personal Digital Assistant

Personal Handheld Computers (PDAS, Personal Digital Assistants) vary in form and size, they
run different operation systems (PalmOS, Windows CE) and are more or less powerful de-
vices. In our case, the PDA of choice isthe IPAQ by Compag, which represents a perfect plat-
form for the Java Client to run. It can also be easily equipped with a PC card for wireless
communication. It disposes of a colour display, allowing to display images in high colour and
usually 64 Mb of RAM.

3.1.2 Java

Java is a modern programming language, which provides the ability to run on different oper-
ating systems. We considered this to be a mgjor advantage for our project. Concerning the
client program (User as well as Admin Client), the only constraint is the limitation to AWT as
graphical base component, as on PDAs only a limited version of Java is available. Compared
to the new graphics library SWING, AWT has a rather limited pool of graphical components,
though lacking no crucial functionality.

For the server, the multithreading operability of Java provides a perfect base to manage the
client connections as well as the different auctions and the database connectivity in real-time.
The disadvantage of a rather weak performance compared to other programming languages
was not critical in our system, neither for the server nor for the clients.

The use of Java on both the client and the server system makes it possible to easily implement
a proprietary protocol to manage the communication. This protocol is based on the exchange
of PDUs containing different message objects. They support al necessary tasks like login and
bid requests, the appropriate confirmations and error handling.

12

3.1.3 Wireless communication

With the upcoming trend to smaller and mixed devices an ever growing number of cables
limit functionality and fun. The direction in computer interconnectivity is predictable: wire-
less connectivity. It makes it possible to stay connected to networks while moving around in a
local area. Thisisanew dimension in comfort while being alow cogt solution.

Whereas normal network connections are becoming better in quality, giving the guarantee of
reliable links, wireless connections are vulnerable to interruptions. For this reason, we chose
TCP as our protocol for the PDUs: It assures the correct transmission of data by built-in error
detection and flow control. This is considered to be the best compromise between faster pro-
tocols like UDP and reliability. Connection to the server is therefore done by providing an IP
Address coupled with a port number (Socket).

3.1.4 Internet Connectivity

Despite the fact that this project first was designed for local scenarios, later on, the goal was
extended to manage worldwide auctioning. Reasons for this were that the local scenario could
easily be adapted to the Internet, where TCP/IP is the general standard anyway for communi-
cation between terminals of any kind.

This scenario is characterized by a certain number of possibilities concerning how the clients
can connect to the server. In general they connect to their local Internet Service Provider (1SP)
and from there they reach the auction server by IP. Problems can occur when data packets
need too much time on their way and timeouts happen.

Figure 6 Internet Scenario

13

3.1.5 Operating Systems

As the server and the client both use Java, the underlying operating system is of minor im-
portance. Usually, different behaviour of Java on different operating systems can be observed,
but most of the problems concern the graphical user interface only.In our case, we have cho-
sen Windows 2000 as operating system, rather because of the need of development software,
than on atechnical basis.

3.2 Softwar e structure

Figure 7 and Figure 8 will give an overview of the classes used to implement the system.

3.2.1 Server

Figure 7 gives an overview about the server software structure. In the following, the most
important classes are further described:

EnglishAlgorithm DutchAlgorithm DecreaseThread
\\
AuctionSpooler \\
//// 1 ihs‘tantiate\\,\, | ff
~ | Algorithm 1
SynchThread i T
1 : 0]
0.* PDU
1 1 1 0.* / g
UserlnputThread |- AuctionServer .. — Connection - NutBid
1 1 1 —1 0. A ‘
1 instantiate Bid
ErrorWriter | 1 —— /
1 CommunicationThread /
T o— 1
——————= DataStore /
o /
\ T /
— W
—1 User
/0..% 0.*
~0.*)
Error 0.* é{/{/
0.* | Auction | 1
JDBCDataStore Category

Figure 7 Server Softwar e Structure Overview

3.2.1.1 Auction Server

The AuctionServer class is the main part of the server system that holds together the whole
framework of the server architecture. It includes the main method to start the application and
invokes all other necessary threads. It manages the active connections, the dynamically load-
able Algorithms and the association between Auctions and Algorithm instances.

14

3.2.1.2 DataStore

The DataStore serves as a entral placeto store data. The different types of data ae Users,
Auctions, Categories and Errors. As an abstrad class DataSore encgpsulates the tedhnical
storage of the data. Currently, there is only one implementation of the DataStore class, the
JDBCDataSore.

3.2.1.3 SynchThread

Several issues require synchronization between server and client. First of all, both systems
may be locaed in different time zones or have & least different system times. Users sould
neither wait unnecessary long nor miss an auction caused by inacairate time information,
especially when conducting real time auctions in our case. A difference of few minutes or
even seands can be relevant. On the other hand we have to deted connection loss to alow
fast reconneaion and to inform the user. The SynchThread solves these problems by periodi-
cally sending synchronization messagesto al conneded clients. Clients can be sure to receve
a least one message every x seconds. If not they can read accordingly by informing the user
or automaticall y establishing a new connedion.

3.2.1.4 UserlnputThread

This component allows dired accessto control the server via mnsole. The threal waits for
user input to shutdown the server, load new Algorithm classes or show the rudimentary
graphical user interface It runs as a daemon thread in order to allow the program to terminate
while the "read" operation is gill blocking.

3.2.1.5 Algorithms

The Algorithm class defines a kind of auctionee that performs the logic processing related to
a cetain auction. Some alministrative methods are implemented in the astract Algorithm
class enter, leave, open, start and stop is identical for each Algorithm. Algorithms can access
aligt of all participants. Every participant is informed about other users entering or leaving.
Changes in the runtime state when opening, starting or stopping are stored in the DataStore
for seach purposes. An auction is only started if enough users entered the auction. In case of
an error or auction abortion users can be expelled from auctions.

3.2.1.6 AuctionSpooler

As auctions can be aeaed with a start time in the future there neels to be aprocess that
automatically starts auctions at the desired time. The AuctionSpooler performs this scheduling
function. It permanently searches the DataStore for upcoming auctions. Auctions that could
not be started due to server down time - those that are marked as upcoming but have astart
time in the past - are rescheduled to afuturetime.

3.2.1.7 CommunicationThread

Communicaion is based on TCP/IP sockets. Java allows to establish connedions using Sock-
ets for ead client. These Sockets can be aeaed using a Server Socket that listens on a specific
IP port. Accepting conned requests results in a new Socket for each connedion. These Sock-
ets can be used in the Connection class to communicate with the client.

3.2.1.8 Connections

For ead client a separate connedion is necessary. The Connection class is based on Java' s
TCP/IP Sockets, which allow point-to-point communication in both diredions. Protocol Data
Units (PDUs) can be sent using an ObjectOutputSream or are recaved by an Objectlnput-
Sream.

15

3.2.1.9 ErrorWriter

Server side arors sould be stored in a eentral place This class provides a simple method to
log messages in the DataSore. If afile for logging puposes is Pecified as a start parameter
of the goplicaion, messages are printed to a file or the screen. Messages can be of type aror,
warning, info or debug. As debug messages occur very often, they are never logged in the
DataStore but can ke printed to the file or screen. The administrative client allows viewing
the stored messages.

3.2.2Clients

A simplified classdiagram of the client can be seen in Figure 8. In the following, the main
functionalities of the classes are described in short.

UserClient UserClientGUI

ClientPDUReader ExpectedConfirmation

\ v/ i
~ B \\ // \\\ //
- . Client -
MessageProcessor ; Communicator ClientGUI

5
" A
A /\

| |

AdminClient AdminClientGUI

Figure 8 Client Software Structure Overview

3.2.2.1 ClassClient

Classclient is the central core of the client applications. Within this class all model data is
maintained. That is —for example- user data, auctions, available algorithms and the like. The
central client module cmmunicates on the one hand with the user via the ClientGUI and on
the other hand with the server using the capabilities of class Communicator. Abstrad class
Client is the super classfor the two specialized Client classes UserClient and AdminClient.
All methods that need to be implemented by a cetain Client class are declared abstrad.

3.2.2.2 Class UserClient

UserClient is an adual implementation of abstract class Client. It provides the functionality
necessary to suppat the use of the client application by a regular user. That is creaing auc-
tions, participation including bdding, editing user data and the like.

16

3.2.2.3 Class AdminClient

AdminClient is the Client version used for administrative client application. It provides the
methods used for administrative purposes. That includes viewing and maintaining the eror
log, user acounts, connedions and so on.

3.2.2.4 Class ClientGUI

Analogue to the Client module, the GUI module depends on an inheritance relationship with
super class ClientGUI. It dedares all methods that have to be implemented by a GUI for a
wa3auction client application. The basic GUI is designed so it can run both on an iPAQ and on
regular desktop or notebook PCs.

3.2.2.5 Class UserClientGUI

UserClientGUI isthe sub classof ClientGUI that is to be used with the UserClient version of
our application. It consists of a Frame and many screens in the form of Panels that are man-
aged by a CardLayout layout manager. This is a perfect fit for the use of the GUI on an iPAQ.
The screens include display screens for auction details, algorithm explanations and auction
listsaswell asinpu screens for user data, auction credion, login, connection and so on.

3.2.2.6 Class AdminClientGUI

AdminClientGUI is the GUI version for the administrator client applicaion. It contains sme
feaures similar to the user client version and some alditional screens for error, connedion,
caegory and user acmunt management.

3.2.2.7 Class Communicator

ClassCommunicator is the part of the client applicaion that is responsible for server commu-
nicaion acording to the w3auction communicaion protocol. It can set up a connection to a
specified server and port and monitor that connedion in order to detect possble wnnection
losses. It is able to permanently listen for independent server messages by the use of the Cli-
entPDURealer and to send messages from the client to the server. For this case the Commu-
nicaor contains a simple data structure cdled ExpectedConfirmation that is used to link a
request (client) to arecaeived confirmation (server).

3.2.2.8 Class ClientPDUReader

This class is the part of the communication module that is permanently reading messages
from the network. After recaving a message it determines whether the message has been ex-
peded and if so notifies the Thread waiting for the confirmation. If not, the ClientPDUReader
enqueues the message for the MessageProcessor and listens to the network again. The second
purpose of the ClientPDUReader is the detedion of network disturbances or connedion
losses. The reader thread “knows’ that a server side synchronization message is snt a a con-
stant rate. Therefore the client can assume aconnedion lossafter not recaving a synch mes-
sage for a cetain time. In this case aseparate Threal, ConnedionLosHandler, is darted that
interads with the user to ask for further instructions and can remnned to the server. Reoon-
neding includes restoring the aurrent state of the dient, i.e. logging in, re-entering the aic-
tions the client was participating in and the like.

3.2.2.9 Class MessageProcessor

The MessageProcesr permanently looks up new messages in its queue and processes them.
This is done by determining the type of message and afterwards calling the specific receiving
method of the client.

17

3.2.3 Communication Protocol

The communication protocol is the essential part of the design that is responsible for the link
between clients and server. Client and server architecture have to be designed around the
protocol. The protocol defines the encoding of messages and the communication sequences.

POU
(from communication)
& senderlD long
GSERVER : int=1
GHEWY_CLIENT @ int = - 1

SFDU()
®getSenderD)
®cetSenderD)
Sgetvessage()
®cetvessage()
- UpdateUs erlnfo Re quest
BIdREqu.ESt. (from communication)
(from communication) _l% i > T
&auctionlD : long achon.
&offer : double théMessage :UpﬁtﬁUserlnfﬂRequest()
. etiction
$BidRequest() ’getﬂ\ctiong
SgatAuctionlD() Message @
@ . - getUpdatedser()
setAuctionlD() (from communication) @t datedUserp
SgetOffer() uszer String i
ScatOffer() &requestlD : lang
Shlessage])
‘getUserO thellser

LoginRequest :SEIESEVO 100
Be=rd etReques
(fram co.mmu.nlcatlon) ‘getReguegﬂDO LoginConﬁrmatiDn . User
@user. Strlrjg) frmm cammunicatin n) (from comman)
ppassword : String | & newSenderlD : long

(from communication)

BidConfirmation
(from communication)

GAUTONOMOUS - int=-2

EauctionlD long

SCanfirmation)
‘SetErrorOhjectO
®getErrorOhject()

SsothlewSendedD)

N o -thellser
‘ES?GHSTETSUESW :LoginConﬁrmationO

@ getUserDataq)

‘Zstgggg\wdo :setUserDataO

‘SetPasswordO Confirmation ZB/ gethlewSenderlD)

&offer : double
Sbidder String /{7

&comment|[] : String

\the ErrorObject

$BidCaonfirmation()

SyetAuctionlD(ErrorObject

:SetAuctiUmDO l% (frorr;Dcomlmunication)
etOffer errorlD : long

’getOﬁerg BtextMessage(] : String

Ok long=10

SgetBidder])
SWARNING - lang = 1

ScotBidder])

¥yetComment() QERROR : long =2
SErrorObject()
SyetErrorD()
®catErroriD()
SgetTextMessage()
ScotTextMessage(])

Figure 9: Excerpt from the communication protocol design

Figure 9 shows an excerpt of the communication protocol design. As communication is based
on serialized objects, every class to be transferred implements the Java.io.Serializable inter-
face.

The protocol allows only PDUs to be sent. These PDUs always include one Message. Client
and Server try to read incoming PDUSs, extract the included Message, and check which par-
ticular message type has been received. Classes that are defined in the communication proto-
col do not provide methods for activities on the client or the server side. They are only used
passively to transfer data. This strong separation has the advantage that changes on one side
do not affect the other.

18

Clients are intended to send only PDUs containing request messages, for example LoginRe-
guests, BidRequests or UpdateUserInfoRequests. As a response to such a message, the server
will reply with a confirmation or response. A request always belongs to a user and contains a
requestiD to identify the rrect response message.

The Confirmation classdefines that an additional object (i.e., the ErrorObject) is included to
inform the user about successor failure by supplying multilingual text messages and an er-
rorlD, which indicates the success $atus. The requestiD of the outgoing reply is set to the
same value as of the incoming request.

Furthermore the server is allowed to send unsolicited messages to the client. For example a
BidConfirmation for example is snt to al participants of an auction for every bid. The re-
guestiD is %t to AUTONOMOUSthen.

Some server messages contain additional objects such as the complete User record in a
LoginConfirmation.

3.3 Graphical User Interfaces

In this sedion we describe the graphical user interfaces (GUIs) of the w3auction system.
3.3.1 User Client and Admin Client GUI

For the GUIs of the User and the Admin Client, we had to live with several major constraints.
As mentioned before, because of the limited versions of Java on most of the PDAS, the
graphical components had to rely on Java’'s much older graphica library AWT which pro-
vides fewer graphical components with a totally different appeaance than the new library
SWING.

In addition, the screen size of the iPAQ is rather small. The adual areaitself where compo-
nents can be displayed has a size of 240x280 pixels. Figure 10 presents a final version of the
GUI for the user client. It is st for the final size, images have been added, an components
have been grouped by functionality. It presents a scenario when the client is participating in
an auction. The objed to be sold is presented with an optional picture. The type of auction
with its parameters is presented on the left and other participants are displayed in the box on
the right.

19

(EWI - huction st =) B

Uzer Auctions Help 150202, 1442

Big Car

Cars

Seller heikol

Start Price: 10000.0
Stop Price: 0.0

Step: 100.0‘, P

English Auction qunnar?
State: STARTELD larz
Winning Bid: 0.0 heiko
cnully

BN

53: New user entered! | |
52: Ready, steady, go! Place your bids! |
52 I'm waiting for your bid!]
53 User left audtion! V

Figure 10 Client GUI Final Version

3.3.2 Server GUI

The optional server GUI is mainly intended to support the debugging and testing of the server.
Figure 11 shows an example of active connections and occurring errors. In addition, the GUI
allows to search the database for users and categories. They can also be deleted interactively.
ol %
Aclminiztration

I L5/0L/02 22:27:11 Pezver staitca
L5/0lf0z 2%:27:11 Comld net loa

i

I 1570102 E3:£7:11 Algorithm Dut
I 150102 22:27:11 Algorithm Enc
I LE/0L/02 22:11:01 Fezvexr staite
E 1§/01/02 22:11:01 Comld mot loa
I 15010 2%:10:25 Ferwver shutdc
I 18f0LS0Z 232:11:01 Algeriehm Eng
I 150102 22:11:01 Algorithm Dut
I L5/0Lf02 22:10:20 Zhutvdown in E
I 15/0L702 22:10:22 Clesing pert
E 15/0170Z 21:07:22 InpueStraam &
I 15/01702 20:238:21 Zerzwer =tarte
£

LEAOL0E 20: 5410 DBrzes: nuall s
e ST S R e et i
I _*I_I

Refresh | Deleta I
hefore: ||:I;at|3

Figure 11 Server GUI

3.4 Database M anagement System

For our project we have chosen a MySQL database management system for the following
reasons.

- this software is free,

- it delivers avery fast, multi-threaded, multi-user and robust SQL database server,

20

- it is compatible with various programming languages, MySQL client tools and APIs,
- it works on many different platforms,
it supports many column types (FLOAT, DOUBLE, CHAR, VARCHAR,...)

Our database is composed by 4 tables : Users, Auctions, Categories and Errors.

creationTime

buyer bankId
exchangelnfo bankMarne
lastModified bankaccountMurmber
minlJsers crediCardExpirationDate
skake creditCardFirm
skep creditCardMumber
rnaxCuration language
stopPrice country
startPrice city
algo postalCode
seller number
imagelRL street
description telephone
cateqgoryId email
itemMarme firskMame
skartTime lastMame
auctiondDy m : passward

— userhame

category’
categoryMame

Figure 12 Database Architecture

To connect our application to the database we make use of a JDBC class. In this class we im-
plement the IDBC MySQL, where we connect to the database.

In this class we have specified the path of the JDBC driver, the user name, the password
(which permit to connect the database), the database name as a valid JDBC data source, the
table names and all the methods who permit to initialize the database, insert new data into
relations (e.g., when a user client creates an auction, item information and parameters are en-
tered and the insert auction method is used), select data with different criteria (e.g. a user
looking for particular data, select methods with parameters are used) and delete data from
relations.

3.5WirelessLAN

The wireless LAN environment is based on the IEEE 802.11 standard of the International
Standards Organisation (I1SO). It concerns the layers 1 and 2 of the OSI Model, as shown in
Figure 13

21

802.2 LOGICAL LINK CONTROL

DATA
8021 BRIDGING LIMK
LAYER

802.10 SECURITY

B02.3 BOZ2.4 B802.5 BO2.5 BO2.9 80211 80212
MEDI LK MEDIUM MEDIUM MEDIURM MEDI UK MEDIUM MEDI UK
ACCESS ACCESS ACCESS ACCESS ACCESS ACCESS ACCESS

802.1 MAMNAGEMENT

B02.3 BO2.4 B02.5 BO2.5 BO2.9 B02.11 Bi2.12 PHYSICAL
PHYSICAL] |PHYSICAL| |PHYSICAL] |PHYSICAL| |PHYSICAL) [PHYSICAL| [PHYSICAL LAYER

B2 OVERVIEW & ARCHITECTURE®

* Farmerly IEEE Sid 802 14,

Figure 131S0O Standard 802 for local area networks

It defines one base station, a so-cdled accesspoint. Accesspoints transmit network signals to
the clients. The range varies and depends on floors and walls around, usually from 50 upto
300 meters.

An interesting feaure is the possibility to connect several access points together in order to
allow users to roam about without loosing their network connedion. In this way, assuming
there ae enough base stations provided, a virtually unlimited area @n be @vered, so that
there ae no restraints regarding the size of alocal scenario.

In general, the accaspoints are themselves conneded to a wired network through an Ethernet
conrection: they may also conned to an Internet Service Provider (ISP) through a built-in
modem.

In terms of network technology, wireless acaess points ad usually like layer-2 bridges, con-
neding different parts of a network. These parts have to be of the same kind, so clients are
forced to use the same network protocols. Bridges perform a simple routing mechanism on the
level 2 of the OS| standard model.

4. Experience

4.1 Experiencewith early users

At this moment, we don't dispose of enough experience with ealy users to draw any conclu-
sions. Neverthelessit can be stated, that the system till | adks user friendly interfaces and co-
herent error messages and information throughout the program.

4.2 Implementer’s experience

For the developers, this projed was an incomparable experience regarding the use of new
technologies, like modern handheld devices and wirelessLAN. It provided the possibility to

work closely with modern approadhes of software design, like the description language UML
and an object oriented approacdh in programming.

22

It was for most of us the first time to experience the complete life-cycle of a software project,
with all aspects longing from analysis and implementation to database management, tests and
a complete documentation.

5. Conclusion and Outlook

Our software system is operational and all necessary functions have been implemented. We
have managed to provide easy to use user and administration clients.

Concerning the future development of this project, there is certainly a need to include appro-
priate add-ons concerning the aspect of security, as our software is at this time not yet pro-
tected against possible attacks over the net.

In order to make our system operational on arealistic real-world basis, it is hecessary to pro-
vide an integrate settlement. User data must be verified, and checked for possible cheating,
double accounts, invalid entries. After an auction has finished, the contact between the par-
ticipants has to be established, the validation of auctions must be considered.

Electronic payment must be integrated into the system, which requires secure transfer and
protection of banking information.

References

[1] Project Homepage
http://clio.unice.fr/~lesonnal/site2/

[2] Teleseminar. Online Resource:
http://www.informatik.uni-
mannhei m.de/informatik/pi4/stud/veranstaltungen/ws200102/seminar MA Nice/

[3] Sun. The Java Online Documentation:
http://Java.sun.com/

[4] Nicolai Scheele: Interaktive Lehre durch Einsatz mobiler Endgerate. Diplo-
mar beit, Lehrstuhl fur Praktische Informatik 1V, Universtat Mannheim,
2001

[5] EBay Online Auctioning.
http://www.ebay.de

23

