

Lecture 1 (1 hour and half)

XML Overview

Topics

- What is XML?
- Why XML?
 - ◆XML feautures and value-propositions
- Where does XML come from?
- Where is XML being used today?
- What do you do with XML document?
- What is going on standards front?

Objectives

- Understand fundamental concept and features of XML
- Get some perspective on how XML is being used in real-world

What is XML?

- eXtensible Markup Language
- is Meta-Markup language
- is Not just a markup language

The Data Problem

- Fundamental "issues": How do I represent my "application" data?
 - Performance (speed/time)
 - Persistence(short/long lived)
 - Mutability
 - Composition
 - Security (encryption/identity)

Data Problem (Cont.)

- Open Information Management:
 - ◆ Interpretation
 - ◆ Presentation
 - ◆ Interoperation
 - ◆ Portability
 - ◆ Interrogation

Markup Language

- Used to markup data
 - Methodology for encoding data with some information
- Examples
 - ♦ Yellow highlighter on a string of text as emphasizer
 - ◆ Comma between pieces of data as separator

Markup Language

- Two important aspects
 - ◆ A standard for "valid markup"
 - HTML tags
 - ◆ A standard for "what markup means"
 - HTML tags "communicate" layout and formatting information
- Typical markup languages define a set of tags each of which has some associated meaning

Markup Language Usage Examples

- Word processing documents
- Data on the network
- Database
- Multi-media contents
- HTML

HTML

- The most popular markup language
- Defines a set of tags
- Designed for presentation for data
- HTML documents are processed by HTML processing application (Browser)

Strengths of HTML

- Easy to implement and author
 - ◆ Small number of tags
 - ◆ Simple relationship between tags
 - Syntax-checking is very forgiving
 - ◆ Limited number of formats possible
 - ◆ Viewers can be small and simple
- HTML trades power for ease of use

Weaknesses of HTML

- Fixed set of tags
 - ♦ Not user extensible
 - Dependency to "markup language" definition process
 - ◆ Dependency to vendors
 - Vendor proprietary tags
 - Implementation not in sync
 - Netscape browser vs. IE
- Predefined semantics for each tag
- Predefined data structure

Weaknesses of HTML

- No formal validation
- Does not support semantic search
- Based on solely on appearance (rendering) NOT on content
- Formatting too simple
 - **♦** Limited control
- Won't do complex documents
- Poor support for print and other media

So HTML is Not suited for handling

- Large and complex data
- Data that must be used in different ways
- Data with long life-cycle
- Data intended to drive scripts and Java applets

So XML is Born!

- Motivations
 - ◆HTML would not work for publishing in general case
 - Web application would require a method of encoding data that could drive arbitrarily complex distributed processes
 - Without XML, HTML would be replaced by a more powerful binary and proprietary format

XML Design Goals

- XML shall be straightforwardly usable over the Internet.
- XML shall support a wide variety of applications.
- XML shall be compatible with SGML.
- It shall be easy to write programs which process XML documents.

XML Design Goals

- The number of optional features in XML is to be kept to the absolute minimum, ideally zero.
- XML documents should be humanlegible and reasonably clear.
- The XML design should be prepared quickly.

XML Design Goals

- The design of XML shall be formal and concise.
- XML documents shall be easy to create.
- Terseness in XML markup is of minimal importance.

Key Features of XML

- Extensibility
- Media and Presentation independence
 - ◆ Separation of contents from presentation
- Structure
- Validation

Extensibility

- XML is Meta-markup language
- You define your own markup languages (tags) for your own problem domain
- Infinite number of tags can be defined
 - ◆ Need for domain-specific standards
 - **♦**XSLT

Extensibility

- Tags can be more than formatting
- Tags can be anything
 - ◆ Semantic data representation
 - ◆ Business rules
 - ebXML
 - ◆ Data relationship
 - EJB 2.0 Containter Managed Persistence
 - ◆ Formatting
 - XSL
 - ◆ Anything you want

Extensibility

- Many domain-specific markup languages
 - ◆ Portable data within domain-specific industry
 - ◆ Portable across the various domain
 - Healthcare and Insurance
 - Chemical and Medicine

Media (Presentation) Independence

- Clear separation between contents and presentation
- Contents of data
 - ♦ What the data is
 - ◆ Is represented by XML document
- Presentation of data
 - ♦ What the data looks like
 - ◆ Can be specified by stylesheet

Media (Presentation) Independence

- Same data can be presented to different communication medium
 - ♦ HTML browser
 - ◆ Voice device
- Same data can be presented to different format
 - ◆ Cell phone as WML
 - ◆ Desktop as HTML
- Via stylesheet

Media (Presentation) Independence

- Stylesheet
 - ◆ Instruction of how to present XML data
 - **♦**CSS
 - Tailored for HTML browser
 - **♦**XSL
 - XML based
 - General purpose
 - Work with XSLT

Separation of Contents from Presentation

- Searching and retrieving data is easy and efficient
 - ◆ Tags give search'able information
- Many applications use the same data in different ways
 - ◆ Employee data can be used by
 - Payroll application
 - Facilities application
 - Human resource application

Separation of Contents from Presentation

- Enables portability of data
- Portable over time and space

XSLT Transformation

Example (XML -> HTML)

XML data:

<destination>sang.shin@sun.com</destination>

XSLT stylesheet can say:

- Start a new line.
- Convert "destination" XML tag to "To:" HTML tag.
- Display "To:" in bold, followed by a space.
- Display your email address.

Which produces:

To: sang.shin@sun.com

Structure: HTML vs. XML

```
HTML (Automatic Presentation of Data)
   <br/>
<by John Doe 1234 </b> // Display in bold
XML (Automatic Interpretation of Data)
  <Employee>
    <Name>
        <firstName> John </firstName>
        <lastName> Doe </lastName>
    </Name>
    <EmployeeID> 1234 </EmployeeID>
   </Employee>
```


Structure

Relationship

- ◆ Employee is made of Name and employ-ID
- ◆ Name is made of firstName and LastName
- Hierarchical (Tree-form)
 - ◆ Faster to access
 - ◆ Easier to rearrange
 - ◆ Can be any number of depth

Structure

- Enables to build large and complex data
- Portability of relationship and hierarchical structure

Validation

- XML data is "constrained" by a Rule (or Syntax)
 - Employee data has to have Name and Employee
 ID elements
 - Name has to have both firstName and LastName elements

```
<Employee>
    <Name>
        <firstName>John</firstName>
        <lastName>Doe</lastName>
        </Name>
        <EmployeeID>1234</EmployeeID>
</Employee>
```


XML Schema

- Defines Syntax
 - **♦** Structure
 - ◆ Vocabulary
- XML document + XML schema work together
 - ◆XML document alone has to be "wellformed"
 - ◆ XML schema checks "validity"

XML Schema

- DTD (Data Type Definition) is the most popular XML schema language for now
- DTD is pretty weak schema language
 - ◆ You can't define "range check"
- There are other emerging XML schema languages
 - ♦ W3C XML schema
 - ◆ Relax

Misc. Features of XML

- Semantics of data
- Plain Text
- Easily Processed
- Inline usability
- Linkability
- Internationalized

Semantics of Data

- Meaning of data
- XML tags "indirectly" specifies the semantical meaning
 - ♦ does <firstName> really mean "first name"?
- Potential for divergence
 - ◆ Industry collaboration to agree upon the semantical meanings of tags
 - ◆ Need for transformation (XSLT)

Plain Text

- Can use any text-editing tool
- Easier for humans to read
 - ◆ Configuration information

Easily Processed

- Set of Well-formed rules
- Validity checking
- Ready-to-use tools
 - parsers (and validators)
 - ◆ transformers
 - ◆ browsers
 - ◆ class generators
 - **♦IDE**

Inline Usability

- Can integrate data from multiple sources
 - ◆ Can be displayed or processed as a single document
- Modularization without using Linking
- Example
 - ◆ A book made of independently written chapters
 - ◆ Same Copyright text in many books

Linkability

- Much more powerful and flexible linking capabilities than HTML's
- Bi-directional
- Mutli-directional
- W3C Xlink and Xpointer specifications

Internationalized

- XML is Unicode-based
 - ♦ You can mix languages
- Both markup and content
- XML tools must support both UTF-8 and UTF-16 encodings
- Critical for world-wide adoption of XML as universal data representation

XML History

- Emerged as a way to overcome the shortcomings of its two predecessors
 - **♦**SGML
 - **♦** HTML

XML History

- SGML
 - ◆ Powerful and extensible
 - Good for cataloging and indexing data
 - ◆ Too complex and expensive
- HTML
 - ◆ Simple and widely supported
 - ◆ Not extensible
- XML
 - ◆"Lean and mean SGML"

XML Evolution

- Discussion got started in 1996 by Jon Bosak of Sun
- W3C-approved XML 1.0 spec in 1998
- XML-related standard activities are moving in dizzying speed
 - ◆ Horizontal
 - ◆ Vertical
 - **♦** E-Commerce

Where Does XML Get Used?

- Simple and complex data representation
- Integration of heterogeneous applications
- Portable data representation
- Displaying and publishing
- Archiving
- Data manipulation
- Business logic representation

Data representation

- XML encodes the data for a program to process
- Readable by humans
- Process'able by computers
- Complex relationship can be represented
- Internationalized
- Many 3rd-party tools
 - ◆ Editing, Syntax checking

Data representation

- Examples
 - ◆ Configuration files
 - EJB deployment descriptor
 - "make" files (Apache ANT project)

Integration of heterogeneous applications

- Typically used with Messaging system
- XML message is minimum contract for communication
 - Loosely-coupled communication
- Enables easy EAI (Enterprise Application Integration)
 - ◆ Payroll, Finance, Products
- E-Commerce
 - ◆ Supplier, distributor, manufacturer, retail

Portable data representation

- Non-proprietary
 - Application independent
 - ◆ Object-model independent
 - ◆ Language independent
 - ◆ Platform independent
 - ◆ Communication protocol independent
 - ◆ Communication media independent
- Used for means of "information exchange"

Portable data representation

- Examples
 - ◆ Purchase order, Invoice
 - ◆ Business transactional semantics
 - ◆ Patient record
 - ◆ Mathematical formula
 - ◆ Musical notation
 - ◆ Manufacturing process

Displaying and publishing

- Common data for different presentations
- Separation of contents from presentation
- Examples
 - ♦ Web information presented to different client types
 - ◆ Information rendered to different medium

Archiving

- XML data can be data storage format of choice
 - ◆ Better version management
 - ◆ Easy to process
 - ◆ Availability of read-to-use tools
 - Report generation
- Standard XML query language
- Examples
 - ◆ XML-based data repository

Data manipulation

- Many tools available for XML data manipulation
- Examples
 - ◆ Data from relational data converted to XML for easy manipulation

Business logic representation

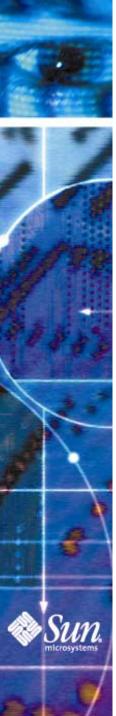
- XML tag can be anything
- It could be business logic or action
- Basis for XML-RPC movement
- Examples
 - ◆ "Withdraw \$40 from my savings account" can be represented as XML

Developer Activities on XML 🦑

- Creating XML document
 - ◆ Mostly by text-editor or WISWIG tools
 - ◆ Programmatically
- Sending and Receiving XML document
 - Over any kind of transports
 - HTTP, SMTP, FTP, ...
 - ◆ Through programming APIs
 - JMS API, JAXM API
 - Socket APIs

Developer Activities on XML

- Parsing XML document
 - Convert XML document into programming objects
- Manipulating programming objects
 - ◆ Application specific way
 - ◆ Examples
 - Display
 - Save them in database
 - Create new XML document


Developer Activities on XML

- "XML document" can be
 - **♦URI**
 - File
 - URL
 - ◆InputStream
 - ◆SAX Input source
 - ◆ DOM tree

Java[™] Technology + XML: Symbiotic Relationship

- It's a "Match made in Heaven"
 - ◆ Java enables Portable Code
 - ◆ XML enables Portable Data
- XML tools and programs are mostly written in the Java programming language
- Better API support for Java platform than any other language

Standardization Activities

- XML core standards
 - ◆ Through Standard organisations
 - ♦ W3C, OASIS, UN/CEFACT
- XML domain-specific standards
 - ◆ Through domain-specific standard organizations
- Java technology-based APIs for XML
 - ◆ Through JCP (Java Community Process)
- E-commerce standards

XML Standards

- XML, DTD
- XSL, XSLT, XPath
- DOM, SAX
- W3C XML Schema
- Namespaces
- XLink, XPointer
- XHTML
- XQL

Domain-specific XML Standards

- Chemical CML
- 2D Graphics SVG
- Math MathML
- Music MusicML
- Travel -OTA
- Many more ...
 - http://xml.org/xmlorg_registry/index.shtml

Core Java APIs for XML

- JAXP: Parsing and Transforming
- JAXB: High-level XML programming
- JAXM: Messaging
- JAXR: Registry APIs
- JDOM: Java-optimized Parsing

E-Commerce Standards

- ebXML
- UDDI (Universal Description, Discovery and Integration)
- SOAP (Simple Open Access Protocol)
- W3C XP (XML Protocol)
- WSDL (Web Services Definition Lang.)
- S2ML (Security Services ML)
- XAML (Transaction Authority ML)

Summary

- XML is the next Big thing
- Is it being hype'd? Maybe yes, then again, it deserves the hype.

Key Future Predictions in summer in 1999 by Jon Bosak

- XML will be the basis for future Web standards
- XML will become universal format for data exchange in heterogenous environments
- XML will become the basis for international publishing
- XML and XSL will replace all existing word processing and desktop publishing formats

Homework of Lecture 1

- Download AMAYA browser and try to display a couple of MathML data (See the class website for details)
 - http://www.w3.org/Amaya/
- No need for submission