8.3 Basic Parameters for Audio Analysis

Physical audio signal: simple

- one-dimensional
- amplitude = loudness
- frequency = pitch

Psycho-acoustic features: complex

- A real-life tone arises from a complex superposition of various frequencies.
- For human audible perception, the emerging and fading away of a tone are very important (e.g., they distinguish the tone of a piano from the tone of a guitar).

A Graduate Course on © Wolfgang Effelsberg, 8. Automatic Content Analysis Multimedia Technology

8.3-1

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

8. Automatic Content Analysis

8.3-2

Perception of Loudness

The physical measure is called **acoustic pressure**, the unit is decibel [dB].

The human audible perception is called **loudness**, the unit is phon.

We can empirically derive a set of curves that depicts the perceived loudness as a function of acoustic pressure and frequency. They are called **isophones**.

Experimental Results

Sea of Love

red curve: acoustic pressure

black curve: loudness as perceived by test subjects

blue curve: computationally predicted perceived

loudness

A Graduate Course on
Multimedia Technology

Ralf Steinmetz

8. Automatic Content Analysis
8.3-3

Fundamental Frequencies in Harmonic Sounds

The fundamental frequency of the composite tone \mathbf{f}_0 corresponds to the minimum common multiple of the two composing frequencies \mathbf{f}_1 and \mathbf{f}_2 .

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
8. Automatic Content Analysis
8.3-4

Frequency Transformations

can be written as the sum of harmonic frequencies: J.B.J. Fourier (1768-1830): Each periodic oscillation

$$s(t) = \frac{B_0}{2} + \sum_{n=1}^{\infty} [A_n \sin(2\pi n f t) + B_n \cos(2\pi n f t)]$$

f: basic frequency A_n , B_n : amplitudes

 $\sin(2\pi nft)$ = multiples of the basic frequency

Frequency Transformation of an Audio Signal

points Here: discrete Fourier transform (DFT) with N sampling

$$S(f) = \sum_{n=0}^{N-1} s(n)e^{-if\frac{2\pi}{N}n}, f = 0,1,...,N-1$$

	s(t)	continuous original signal
step 1		sampling at rate $f_s = \frac{1}{T}$
	s[t]	discrete original signal
step 2		temporal restriction to a window w(t)
	s[t]	discrete original signal containing N
		sampling values [0, NT]
step 3		N-point DFT
	S(f)	continuous Fourier transform
step 4		sampling at rate N per T
	S[f]	discrete Fourier transform

Steps 3 and 4 can be sped up considerably by means of the fast Fourier transform (FFT).

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
8. Automatic Content Analysis	
8.3-6	

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

Automatic Content Analysis

8.3-5

Step 1: Sampling in the Time Domain

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 8. Automatic Content Analysis

8.3-7

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

Automatic Content Analysis

8.3-8

Step 2: Time Restriction to [0, NT]

Time domain

Frequency domain

Step 3: Sampling in the Frequency Domain

Goal: Discretization of the data also in the frequency domain (for representation in the computer)

Time domain

Frequency domain

Reference:

E.Oran Brigham: Fast Fourier Transform and Its Applications, Prentice Hall, 1997

Multimedia Technology	A Graduate Course on
	© Wolfgang Effelsherg
	8 Automatic Content Analysis
Ċ	8 2-0

Signal Analysis with the DFT

Assumption

A natural audio signal of sampling length M is given, e.g., M = 5 min of music.

Goal

Extraction of features, e.g., musical tones (pitch, loudness, onset, etc.)

Method

Definition of a window of size N which is moved over the audio signal. It represents a window of analysis. The DFT is computed on this window. Only with a **windowed** DFT, we can analyze the behavior of the signal over time.

Example: We can assume that musical tones are stationary for at least 10 ms. We thus choose N = 10 ms.

When moving the window, we allow redundancy in order to also analyze the transitions between tones. Here, we chose an overlap of 2 ms. This results in

$$\frac{5x60x100}{8} = \frac{30.000}{8} = 3.750$$

frames.

Signal Analysis - Properties (1)

sample frames It is now possible to compute semantic features for the

1. Energy

$$E_s(m) = \sum_{n=m-N+1}^{m} s^2(n)$$

m = ending time of the frame

under the curve in the time domain. in the frame. It corresponds to the square of the area is a measure for the **acoustic energy** of the signa

measure for its spectral energy spread. frequency-transformed signal. It then denotes a The energy might as well be computed for the

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

8. Automatic Content Analysis

Signal Analysis – Properties (2)

2. Zero-crossings

$$sign(s(n)) = \begin{cases} 1: & s(n) \ge 0 \\ -1: & s(n) < 0 \end{cases}$$

$$Z_{s}(m) = \frac{1}{N} \sum_{n=m-N+1}^{m} \frac{|sign(s(n)) - sign(s(n+1))|}{2}$$

- Counts the number of zero-crossings (i.e., sign changes) of the signal.
- High frequencies lead to a high Z_s, while low frequencies lead to a low $Z_{\rm s}$
- This is closely related to the basic frequencies.

analysis Many other parameters are also used in audio signal

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

8. Automatic Content Analysis

8.3-12