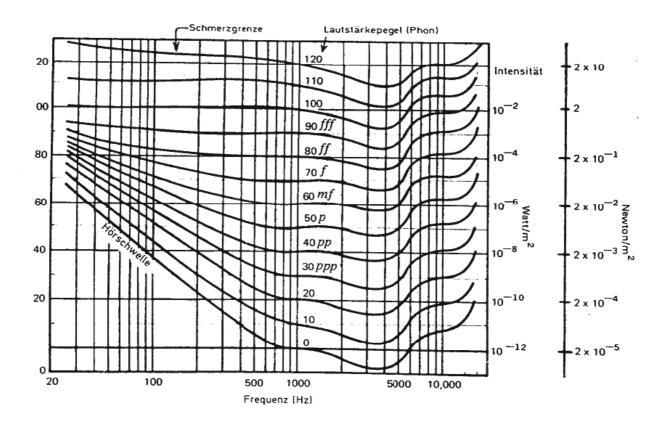
8.3 Basic Parameters for Audio Analysis

Physical audio signal: simple

- one-dimensional
- amplitude = loudness
- frequency = pitch

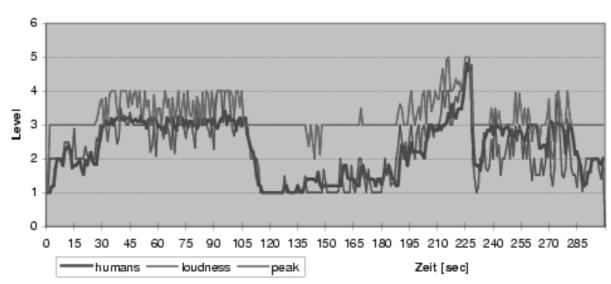
Psycho-acoustic features: complex

- A real-life tone arises from a complex superposition of various frequencies.
- For human audible perception, the emerging and fading away of a tone are very important (e.g., they distinguish the tone of a piano from the tone of a guitar).


A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-1
---	--	-------------------------------	-------

Perception of Loudness

The physical measure is called **acoustic pressure**, the unit is decibel [dB].

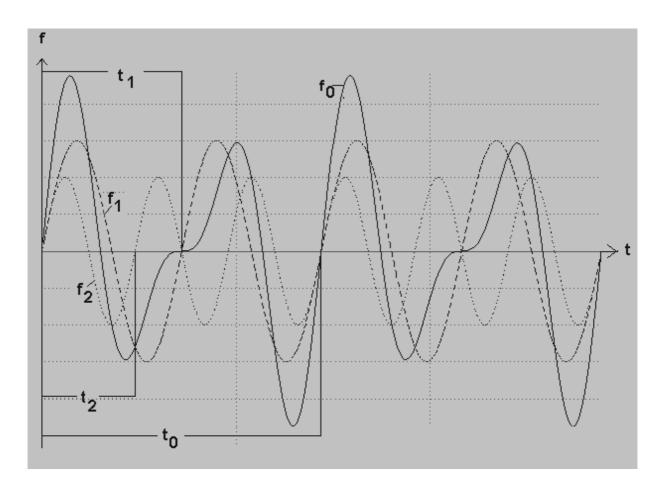

The human audible perception is called **loudness**, the unit is phon.

We can empirically derive a set of curves that depicts the perceived loudness as a function of acoustic pressure and frequency. They are called **isophones**.

A Graduate Course on © Wolfgang Effelsberg, 8. Automatic Content Analysis 8.3-2 Multimedia Technology Ralf Steinmetz 8. Automatic Content Analysis 8.3-2
--

Experimental Results

Sea of Love


red curve: black curve: blue curve:

acoustic pressure

loudness as perceived by test subjects computationally predicted perceived loudness

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-3

Fundamental Frequencies in Harmonic Sounds

The fundamental frequency of the composite tone f_0 corresponds to the minimum common multiple of the two composing frequencies f_1 and f_2 .

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-4

Frequency Transformations

J.B.J. Fourier (1768-1830): Each periodic oscillation can be written as the sum of harmonic frequencies:

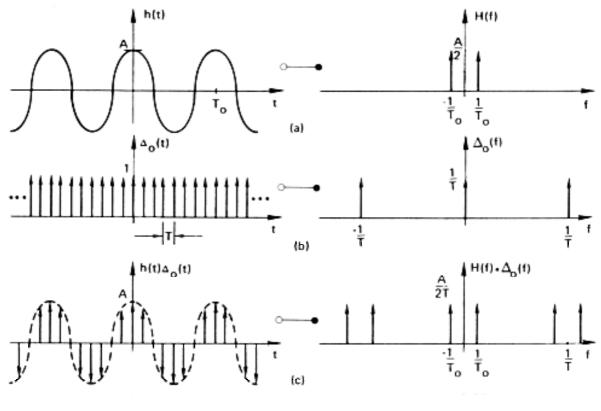
$$s(t) = \frac{B_0}{2} + \sum_{n=1}^{\infty} [A_n \sin(2\pi n f t) + B_n \cos(2\pi n f t)]$$

f: basic frequency A_n, B_n : amplitudes $sin(2\pi nft)$ = multiples of the basic frequency

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-5	

Frequency Transformation of an Audio Signal

Here: discrete Fourier transform (DFT) with N sampling points

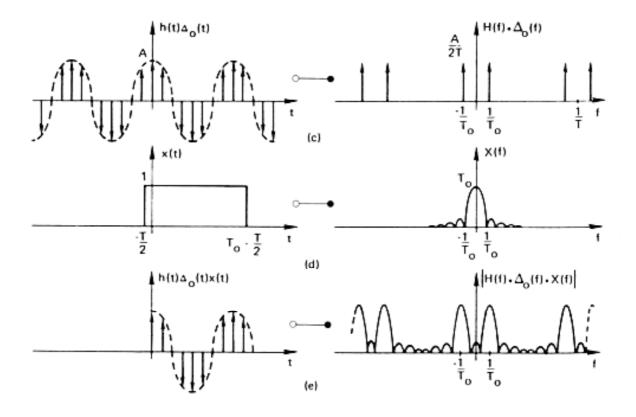

$$S(f) = \sum_{n=0}^{N-1} s(n) e^{-if \frac{2\pi}{N}n}, f = 0, 1, ..., N-1$$

	s(t)	continuous original signal	
step 1		sampling at rate $f_s = \frac{1}{T}$	
	s[t]	discrete original signal	
step 2		temporal restriction to a window w(t)	
	s[t]	discrete original signal containing N	
		sampling values [0, <i>NT</i>]	
step 3		N-point DFT	
	S(f)	continuous Fourier transform	
step 4		sampling at rate N per T	
	S[f]	discrete Fourier transform	

Steps 3 and 4 can be sped up considerably by means of the fast Fourier transform (FFT).

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-6

Step 1: Sampling in the Time Domain

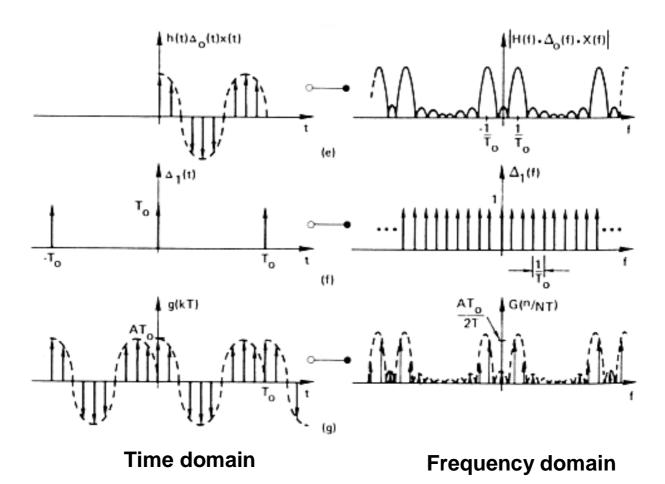


Time domain

Frequency domain

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-7

Step 2: Time Restriction to [0, NT]


Time domain

Frequency domain

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-8

Step 3: Sampling in the Frequency Domain

Goal: Discretization of the data also in the frequency domain (for representation in the computer)

Reference:

E.Oran Brigham: Fast Fourier Transform and Its Applications, Prentice Hall, 1997

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-9

Signal Analysis with the DFT

Assumption

A natural audio signal of sampling length M is given, e.g., M = 5 min of music.

Goal

Extraction of features, e.g., musical tones (pitch, loudness, onset, etc.)

Method

Definition of a window of size *N* which is moved over the audio signal. It represents a window of analysis. The DFT is computed on this window. Only with a **windowed** DFT, we can analyze the behavior of the signal over time.

Example: We can assume that musical tones are stationary for at least 10 ms. We thus choose N = 10 ms.

When moving the window, we allow redundancy in order to also analyze the transitions between tones. Here, we chose an overlap of 2 ms. This results in

$$\frac{5x60x100}{8} = \frac{30.000}{8} = 3.750$$

frames.

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-10	

Signal Analysis – Properties (1)

It is now possible to compute semantic features for the sample frames.

1. Energy

$$E_s(m) = \sum_{n=m-N+1}^{m} s^2(n)$$

m = ending time of the frame

 E_s is a measure for the **acoustic energy** of the signal in the frame. It corresponds to the square of the area under the curve in the time domain.

The energy might as well be computed for the frequency-transformed signal. It then denotes a measure for its **spectral energy spread**.

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-11

Signal Analysis – Properties (2)

2. Zero-crossings

$$sign(s(n)) = \begin{cases} 1: & s(n) \ge 0\\ -1: & s(n) \prec 0 \end{cases}$$

$$Z_{s}(m) = \frac{1}{N} \sum_{n=m-N+1}^{m} \frac{|sign(s(n)) - sign(s(n+1))|}{2}$$

- Counts the number of zero-crossings (i.e., sign changes) of the signal.
- High frequencies lead to a high Z_s, while low frequencies lead to a low Z_s
- This is closely related to the basic frequencies.

Many other parameters are also used in audio signal analysis.

A Graduate Course on Multimedia Technology	© Wolfgang Effelsberg, Ralf Steinmetz	8. Automatic Content Analysis	8.3-12