3. Quality of Service

9	Multimedia Technology Rali	A Graduate Course on © Wol	
	Ralf Steinmetz	fgang Effelsberg, 📗 :	
		Quality of Service (QoS)	
		<u>۵</u>	

Content

- 3.1 Motivation
- 3.2 Characteristics of Real-Time / Multimedia Systems
- 3.3 QoS Definition
- 3.4 Resources
- 3.5 Providing QoS
- 3.6 QoS Architectures

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, 3 Ralf Steinmetz	
3. Quality of Service (QoS)	
3-2	

3.1 Motivation

Kinds of systems we are dealing with are

Local:

- Harddisk recording
- Interactive DVD
- Computer based training

Distributed

- Conferencing
- Video on demand
- IP-Telephony

Basic terminology

- Resources
- Realtime
- Quality of Service

What and how much of it do we need, and how do we describe that?

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

3. Quality of Service (QoS)

3-3

Motivation for QoS

A QoS model and its implications

- QoS specification
- QoS calculation
- QoS enforcement

QoS has different implications in different fields:

- Operating system / Resource scheduling
- File system organization
- Compression
- Communication system support
- Media synchronization
- User Interface
- and more ...

3.2 Characteristics of Real-Time / Multimedia Systems

Real-time System:

"A system in which the correctness of a computation depends not only on obtaining the right result, but also upon providing the result on time."

Real-time Process:

"A process which delivers the results of the processing in a given time-span."

Real-time applications - examples

- Control of temperature in a chemical plant
- driven by interrupts from external devices
- these interrupts occur at irregular and unpredictable intervals

Example: Control of a flight simulator

- execution at periodic intervals
- scheduled by a timer service which the application requests from the OS

Common characteristics:

- internal and external events that occur periodically or spontaneous
- correctness also depends on meeting time constraints!

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
3. Quality of Service (QoS)

3-5

Deadlines in Realtime Systems

A deadline represents the latest acceptable time to finish an operation, e.g., for the presentation of a processing result

Hard deadlines:

- should never be violated
- result presented too late (after deadline) has no value for the user
- violation means severe (potentially catastrophic) system failure
- Example: Nuclear power plant

Soft deadlines:

- deadlines are not missed by much
- not too many deadlines are missed
- presented result still has some value for the user
- Example: train/airplane arrival / departure

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
3. Quality of Service (QoS)	
3-6	

Realtime System - Requirements

Primary goal:

- deterministic behaviour according to specification
- results in a variety of requirements

Mandatory requirements:

- Predictable (fast) handling of time-critical events
- Adequate schedulability
- Stability under overload conditions

Desirable requirements:

- Multi-tasking capabilities
- Short interrupt latency
- Fast context switching
- Control of memory management
- Proper scheduling
- Fine-granularity of timer services
- Rich set of interprocess communication and synchronisation mechanisms

Multimedia Technology	A Graduate Course on
Ralf Steinmetz	© Wolfgang Effelsberg.
	e <u>Z</u> .
	3-7

Multimedia Systems

A new application area for real-time systems with special characteristics:

- Typically soft real-time and not (that) critical
- Requirements may often be adapted to ensure proper handling, e.g., scaling of data streams to available bit rates

Characteristics

- Periodic processing
- Large bandwidth
- End-to-end guarantees
- Fault-tolerance
- Fairness
- Standardization

Multimedia Technology	A Graduate Course on
Ralf Steinmetz	© Wolfgang Effelsberg,
	3. Quality of Service (QoS)
	3 -8

3.3 QoS - Definition

Quality of Service =

"well-defined and controllable behavior of a system according to quantitatively measurable parameters"

Layer model

Different service objects:

- Media / Streams
- Tasks
- Memory areas

QoS - Layer Model

Examples: both qualitative / quantitative description

Perception QoS

- Tolerable Synchronisation Drift
- Visual Perceptability

Application QoS

- Media Parameters
- Media (Transmission) Characteristics

System QoS

- CPU Rate / Usage
- Available Memory

Communication QoS

- Packet Size / Rate
- Bandwidth
- End-to-End Delay

Device QoS

- Seek / Data Transfer Rate
- Sample Rate / Resolution

Multimedia Technology	A Graduate Course on
Ralf Steinmetz	© Wolfgang Effelsberg
	3. Quality of Service (QoS)
	3-10

QoS Parameters – Example: Transport System

Common parameters concerning the Transport System are:

- Throughput
- Delay / Jitter
- Loss / Reliability

But also:

- Security
- Cost
- Stability (Resilience)

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
3. Quality of Service (QoS)
ş-11

QoS Parameter Example

Delay

- Maximum end-to-end delay for transmission of one packet
- Delay jitter = maximum variance of transmission times

Throughput

- Maximum long-term rate = maximum amount of data units transmitted per time interval (e.g. ,packets or bytes per second)
- Maximum burst size
- Maximum packet size

Loss

- Sensitivity class: ignore / indicate / correct losses
- Loss rate = maximum number of losses per time interval
- Loss size = maximum number of consecutively lost packets

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
3. Quality of Service (QoS)	
3-12	

Service Classes

Guaranteed Service

- Values or intervals of QoS parameters
- deterministic (at any time)
- statistical (consider a time interval or a certain propability)

$$QoS_{min} \leftarrow P \leftarrow QoS_{max}$$

Predictable Service

- consider history
- from the very beginning of calculation
- in a shifting time window
- "if it was like that in the last ..., you can rely on ..."

Best Effort Service

no quarantees given

A Graduate Course on © Wolfgang Effelsberg, 3. Quality of Service (QoS) 3-13

Multimedia Technology Ralf Steinmetz

QoS Intervals (1)

Parameter values result in

- acceptable regions
- inacceptable regions

of QoS in one-dimensional intervals

- Below required QoS level no useful service
- Above required QoS level unnecessary (useless) resource consumption / cost

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, 3. Ralf Steinmetz	
3. Quality of Service (QoS)	
3-14	

QoS Intervals (2)

Also: multidimensional intervals

3.4 Resources

Classification

By functionality

- active resources
- actively fulfill a certain task
- e.g., processor, network adapter
- passive resources
- provide "space"
- e.g., memory, frequency spectrum, file system

By availability for concurrent usage

- exclusive
- shared

By occurence

- single
- multiple

Common parameter:

"Capacity" - allows quantitative description

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
3. Quality of Service (QoS)	
3-15	

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

Quality of Service (QoS)

3-16

Resources - Availability

Starting point:

scarce, but sufficient resources

Goal

Provide best service at the lowest possible cost

Conclusion

 We need resource management in all components of a multimedia system!

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg,	
3. Quality of Service (QoS)	
3-17	

Relationship Between QoS and Resources

Model

A Graduate Course on © Wolfgang Effelsberg, 3. Quality of Service (QoS) Multimedia Technology Ralf Steinmetz

3-18

Architecture

A Graduate Course on © Wolfgang Effelsberg,
Multimedia Technology Ralf Steinmetz 3. Quality of Service (QoS)

3-19

3.5 Providing QoS

Resource Management Phases

data arrival on streams

QoS enforcement by resource scheduling shaping, loss handling, adaptation

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

3. Quality of Service (QoS)

3-20

3.5.1 QoS Provisioning – Setup Phase

Definition of required parameters

implicitly or explicitly by application or user

Distribution and Negotiation

Translation between different layers

especially if they use different semantics / notations

Transformation

- QoS parameter => Resource requirements
 Allocation and coordination of resources
- along path(s) from source(s) to sink(s)

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
3. Quality of Service (QoS)	
3-2	

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

Quality of Service (QoS)

3-22

QoS Calculation and Negotiation

Model

QoS Negotiation (1)

Bilateral peer-to-peer

- service provider may not modify requested QoS parameters
- only service user at receiver side may modify (lower) value(s) in the confirmation message

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
3. Quality of Service (QoS)

3-23

QoS Negotiation (2)

Bilateral layer-to-layer

- only between adjacent layers
- between local service users and providers
- between sender and network

Unilateral

- no modification of requested QoS parameters allowed, but just accept or reject
- receiver may accept QoS parameter although he cannot meet them
- example: color TV broadcast

Hybrid

- uses unilateral mode for a certain bilateral layer-to-layer negotiation
- example: broadcast/multicast communication
- ===> heterogeneity of receivers

Further:

- trilateral for information exchange
- trilateral for a limited target value

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
3. Quality of Service (QoS)
3-24

Admission Control

The system checks whether requested resources are and will be available. Especially important for shared resources:

- CPU
- network paths
- buffer space.

A simple rule

Check whether the sum of the resources already in use and new request(s) is less or equal to the available resource capacity.

More specific: check for

- schedulability
- availability of buffers (space)
- bandwidth

Note:

- strong relationship with Pricing / Billing
- efficient mechanisms will use "economic feedback" to prevent users from always requesting the maximum

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
3. Quality of Service (QoS)	
3-25	

Resource Reservation

Fundamental concept for the reliable provision of QoS guarantees!

pessimistic - results in Guaranteed QoS

optimistic - results in Statistical QoS

 May use monitoring and react on overload conditions (e.g., CPU load

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
3. Quality of Service (QoS)
3-26

Resource Reservation Aspects - Example

Example

Communication System ===> variety of aspects

Reservation Models

- Sender-initiated
- Receiver-initiated
- Explicit vs. Implicit
- Out-of-Band vs. In-Band

Reservation Style

- Semantics and Notation
- Heterogeneity and multicast support

Reservation Protocols

- IP V.5: ST-II
- RSVP (Resource reSerVation Protocol)

Multimedia Technology	A Graduate Course on	
Ralf Steinmetz	© Wolfgang Effelsberg,	
	Quality of Service (QoS)	
	3-27	

3.5.2 QoS Provisioning - Data Processing Phase

phase 2 (Dat a processing):

data arrival
on streams
QoS enforcement by resource scheduling
shaping, loss handling, adaptation

Maintain resource reservations

Use:

- adequate traffic shaping (to ensure characteristics of processed data)
- Scheduling algorithms
- feedback and adaption of the streams

A Graduate Course on © Wolfgang Effelsberg, 3. Quality of Service (QoS) 3-28

Multimedia Technology Ralf Steinmetz 3. 28

Shaping

Characteristics of Multimedia Traffic:

- bursty
- concurrent requests may cause problems though quarantees could be met (e.g., buffer overflow)

Basic principle

A Graduate Course on © Wolfgang Effelsberg, 3. Quality of Service (QoS)
Multimedia Technology Ralf Steinmetz

3-29

Shaping – Leaky Bucket Algorithm

Bucket Size

 determines maximum capacity till overflow (drop) and possible delay

Other Algorithms

- Token Bucket Algorithm
- Token Bucket Algorithm with Leaky Bucket Rate Control

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
3. Quality of Service (QoS)	
3-30	

Loss Handling

Error Detection

by means of redundancy / checks / analysis

Loss handling algorithms fall into two basic categories:

Retransmission

- Go-back-N retransmission
- Selective retransmission
- Using partially error-free streams

Prevention

- Forward Error Correction (FEC)
- Priority Coding
- Slack Automatic Repeat Request

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
3. Quality of Service (QoS)	
ယ္	

Adaption - Feedback Control

- Monitor the load of network and local end-system resources
- If significant changes occur, take appropriate action to reduce generated load:
- Explicit communication receiver tells sender to slow down
- Completely in network on a hop-by-hop basis
- By feedback from congested network nodes to the sender.

Variety of possible reactions

- e.g., layered transmission
- adaptive degradation of the stream quality
- :

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
3. Quality of Service (QoS)
3-32

3.6 QoS Architectures

Examples (communication layer)

- Heidelberg Transport System (HeiTS)
- uses ST-II (IPv5)
- Internet Integrated Services
- use existing infrastructure, but deploy dedicated handling of flows (streams) in the transfer system
- Resource Reservation Protocol RSVP to support heterogenous needs
- Differentiated Service
- Granularity based on the TOS (Type Of Service)
 IP Header Field
- Define service classes, negotiate service level agreements and ensure dedicated treatment of flows that behave as described

• **IP**v6

- QoS support was an important design criterion from the beginning
- Dedicated header fields to allow classification / dedicated treatment of flows

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
3. Quality of Service (QoS)	
3-33	