2.5 Animations

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.5 Animations	
2.5-	

Contents

- Terminology
- 2. Generation of (Computer) Animation
- 3. Specification and Control of an Animation
- Displaying Animations
- 5. Transmitting Animations
- Storing/Transmitting/Accessing Animations
- 7. Virtual Reality Modeling Language (VRML)

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.5 Animations	
2.5-2	

1. Terminology

- to animate = "to get things alive"
 i.e., to make them change
- visual effects: varying
- position
- shape
- color
- transparency
- structure
- pattern
- . :

caused by:

- activity of objects themselves (e.g. translation, rotation, growth, ...)
- varying environmental conditions (e.g. illumination)
- activity of the viewer (e.g. "walking" through an artifical world)

related to

producing, storing, transmitting, displaying animations

with computer support

...

 many similarities / overlaps / combinations with conventional animation

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
2.5 Animations
2.5-3

2. Generation of (Computer) Animation (1)

1. to describe primitives

- by means of computer-generated images
- digitalization of photos or drawings
- generation of "body models" by scanning characteristic points

2. to combine them (picture composition) to produce single independent frames

3. to describe the dynamics of the scene

- depending on the characteristics of the objects (constant changes, or even "alive" and changing?)
- translations, rotations, growth, zoom ...

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.5 Animations	
2.5-4	

Generation of (Computer) Animation (2)

to change and to combine the primitives according to the dynamics

- inter-frames of moving pictures could be interpolated, e.g. by means of Linear Interpolation (Lerping) or
- (more realistically): to use splines to describe a movement

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.5 Animations	
2.5-5	

3. Specification and Control of an Animation (1)

Specification: 3 main categories of notation:

linear lists, describing

- start and end frame, during which a certain change is hapening
- events / changes to be triggered during that time
- e.g.:
- 42, 53, B, ROTATE "PALME", 1, 30
- between frame 42 and 53 rotate object "PALME" 30 degrees around axis 1

by means of a (Higher Level) Programming Language

- values of variables describe change of certain parameters
- control flow / equations describe the dynamics
- e.g.:
- Language ASAS (LISP extension) with support for graphic primitives (vectors, colors, groups, views ...)

Wolfgang Effelsberg, 2.5 Animations Ralf Steinmetz
2.5 Animations

Specification and Control of an Animation (2)

Special Languages to describe Graphics

- allow for interactive description in a "visual way"
- e.g.: GENESYS, DIAL, S-Dynamics System

A Graduate Course on © Wolfgang Effelsberg, 2.5 Animations 2.5-7
Multimedia Technology Ralf Steinmetz

Control of Animations (1)

explicit / open

 simplest way with explicit description of dynamics for each object

procedural

- objects interact by forwarding information
- to use knowledge about their characteristics
- dependencies (are 2 objects at the same place at the same time?) may be tested
- behaviour of active participants (in "actorbased" systems) may vary due to the activities of others

according to varying conditions

- basic idea: systems are more or less coupled
- models of dynamics of real objects and their material characteristics as basis for motion according to changing conditions

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
2.5 Animations
2.5-8

Control of Animations (2)

by analyseing real motions

- e.g. Rotoscoping: a real person takes the role during the production, its body will later replaced by the the animation (e.g. by partial recolouring)
- use sensors / indicators to get a model of specific points of the actor

kinematics and dynamics

 objects and their movement described by kinematics and dynamics of characteristic points ("mass points")

A Graduate Course on © Wolfgang Effelsberg, 2.5 Animations 2.5-9

Multimedia Technology Ralf Steinmetz

4. Displaying Animations

basic knowledge

- frame rate, etc.
- already known from lecture "Video"

often support by means of special hardware usage:

- "Sprites":
- hardware support for the animation of small objects

Double Buffering:

- write a frame to a buffer that is currently not read by the display adapter
- switch buffers with frame change frequency
- allows for slower access to the video memory while still having a dynamic impression without hard transitions

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.5 Animations	
2.5-10	

5. Transmitting Animations

"pixel representation"

- as series of single images
- well suited for almost any content
- less computional effort at the receiver side
- high data rate, (encoding techniques to reduce it)

"symbolic representation"

- as specifica of graphic objects (e.g. sphere with center, radius and color)
- description of dynamics (e.g. translation or rotation speed of any object)
- depends on finding an equivalent model
- high computional effort at the receiver side
- lower data rate
- well suited for individual interactive access by many users
- (imagine a "world" to be served by a WWW server, that everybody can visit on his own)
- ideas have been pushed by Java and other means of actively executing code at the receiver side

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.5 Animations	
2.5-11	

6. Storing/Transmitting/ Accessing Animations

MPEG

see "Compression"

QuickTime

see "Programming"

\geq

 pseudo standard for animations, integrates a number of dedicated codecs

Animated Gifs

a sequence of pictures in one file

Server Side Pushes

so picture gets reloaded every x seconds

Java

see "Programming"

VRML

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.5 Animations	
2.5-12	

7. Virtual Reality Modeling Language (VRML)

Standard for description of 3-dimensional interactive worlds

- export and exchange format for all major modelling systems
- e.g., CAD systems for describing single objects

History

- development started in Mai 1994
- to be used in the WWW
- versions:
- VRML 1.0
- VRML 2.0
- VRML 97
- (outcome of VRML 2.0 ISO/IEC standardization with few minor extensions)

"Worlds" are described in

- ASCII Files
- (File extension .wrl, or .wrz for compressed represantation)
- combining primitives and describing their dynamics and interactions
- MIME type: model/vrml or x-world/x-vrml (outdated)

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
2.5 Animations
2.5-13

VRML 1.0 vs. VRML 2.0

VRML 1.0

- standard objects (cube, sphere, cone, cylinder, text)
- arbitary objects (surfaces, linesets, pointsets)
- ability to
- fly trough, walk trough, to examine scenes
- lights, cameras (viewpoints)
- textures on objects
- clickable links
- define and reuse of objects

VRML 2.0 (all VRML 1.0 features)

- animated objects
- switches, sensors
- scripts (Java or JavaScript) for describing behaviour
- interpolators (color, position, orientation, ...), extrusions
- background colors and textures
- sound (.wav and MIDI)
- animated textures, event routing
- additional efficient mechanism for defining and reusing objects

A Graduate Course on Multimedia Technology
© Wolfgang Effelsberg, Ralf Steinmetz
2.5 Animations
2.5-14

Using VRML (1)

see VRML Repository at the WWW

http://www.sdsc.edu/vrml/

tools

- VRML viewers
- standalone or as plugins for WWW browsers
- e.g.
 CosmoPlayer (Win) or
 VRWeb (many Unix dialects, Linux)
- "World builders" for editing

A Graduate Course on © Wolfgang Effelsberg, 2.5 Animations 2.5-15
Multimedia Technology Ralf Steinmetz

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

2.5 Animations

2.5-16

Using VRML (2)

```
#VRML V1.0 ascii
Separator {

Material {
    ambientColor 1 0 0 0 diffuseColor 1 0 0 0 diffuseColor 1 0 0 0 }

Cube {
    width 1 height 1 depth 1 }

Material {
    ambientColor 0 1 0 diffuseColor 0 1 0 }

Sphere {
    radius 1 }
```

Using VRML (3)

```
Material {
   ambientColor 001
   diffuseColor 001
   }

Cone {
   parts ALL
   bottomRadius 1
   height 2
}

Cylinder {
   parts ALL
   radius 1
   height 2
}
```

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

2.5 Animations

2.5-17

A Graduate Course on Multimedia Technology

© Wolfgang Effelsberg, Ralf Steinmetz

2.5 Animations

2.5-18

Using VRML - an example (4)

Forms this scene:

- wireframe
- texture
- from a different viewpoint

