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Overview (I)

• Part I: Wavelets
– 1.1 Historic Outline
– 1.2 The Wavelet Transform

– 1.3 Multiscale Analysis
– 1.4 Transformation Based on the Haar Wavelet

• Part II: Implementation Issues
– 2.1 Wavelets in Multiple Dimensions

– 2.2 Signal Boundary
– 2.3 Painting the Time-scale Domain
– 2.4 Lifting
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Overview (II)

• Part III: Applications of Wavelets in Multimedia
– 3.1 JPEG2000
– 3.2 Layered Wavelet Video Coding 

• Part IV: Java Applets for demonstration
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1.1 Historic Outline

• Wavelet theory combines pure and applied mathematics, 
physics, computer science, engineering, etc.

• 1981. Morlet: kept the number of oscillations within a 
window constant, varying the width of the window.

• 1985. Grossmann: discrete wavelet transform is reversible.
• 1985. Meyer: prove of existence of orthogonal wavelets.
• 1986. Mallat and Meyer: multiscale analysis
• 1992. Daubechies: orthog. wavelets with compact support. 
• Since then. Wavelet analysis evolved from a 

mathematical curiosity to a major foundation of signal 
processing algorithms.
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1.2 The Wavelet Transform

Definition. A wavelet is a function                which meets 
the admissibility condition

where      denotes the Fourier transform of the wavelet . 
The constant     designates the admissibility constant.

It follows that a wavelet integrates to zero:

Thus, a wavelet has the same volume ‘above the x-axis’ 
as ‘below the x-axis’. This is where the name originates. 
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Example Wavelets (I)
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• Haar wavelet

• Mexican Hat wavelet

which is the second derivative of 
a Gaussian.
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Example Wavelets (II)
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• Morlet wavelet
is defined via its Fourier transform:

and decomposes into two parts, a real 
and an imaginary one.

• Daubechies wavelet
are obtained by iteration; 

no closed representation exists.
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Which Wavelet?

a) Original signal
b) Wavelet
c) Wavelet analyzes the signal at a position where both shapes are 

similar
d) The integral is large, indicating large similarity
e) Wavelet analyzes the signal at a position where both shapes differ 

largely
f) The integral almost vanishes, indicating no similarity
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Integral Wavelet Transform
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Definition. The integral wavelet transform of a function
with regard to the admissible wavelet is given 

by

where     is the complex conjugate of     .

is called the dilation factor and    is the translation
parameter, thus        denotes a dilated and translated
wavelet.

Remarks:
1. The wavelet transform is linear.
2. A one-dim. signal is transformed into a two-dim. space.
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Wavelet Basis (I)
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A wavelet transform decomposes a signal     into 
coefficients for a corresponding wavelet . Since all
wavelets ‚live‘ in         , we would like to know whether 
every function                can be approximated with 
arbitrary precision. This is the case: The set of wavelets

is a dense subset of          . That is, every function in       
can be approximated by wavelets, and the approximation 
error gets arbitrarily small.

Moreover, we can restrict the ‚pool of wavelet base 
functions‘ to dilated and translated versions of one mother
wavelet .
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Wavelet Basis (II)
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Finally, the parameter          which steers the dilation of 
the wavelet can be restricted further:

The dyadic wavelet transform of    , 

defines a complete and stable representation of     if the 
frequency axis is completely covered by dilated dyadic
wavelets.
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1.3 Multiscale Analysis
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approximations and details.

• Approximation: contains the low frequencies,

• Detail: ‚collects‘ the remaining high frequencies.
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Projection onto Subspaces
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In multiscale analysis, a signal                is projected 
onto a subspace      of          . The projection separates 
out the detail of the signal and only maintains the 
approximation on level    .

Iteration:

Dyadic approach: 
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Approximation

Theorem. Let              be a series of closed nested 
subspaces:

Then there exists a single function                such that

is an orthonormal base of      . 

is called scaling function. Its explicit form is written as 
recursive difference:

where       is called the filter mask. 
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Example 1

• Let      be the indicator function on [0,1). On the scale twice 
as fine,      would need two representatives, i.e.,

Here, the filter coefficients are: 
and                else.

0 0.5 1
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• Let      be the hat function on [0,2). On the scale twice as 
fine,      would need three representatives, i.e.,

Here, the filter coefficients are: 
and                else.
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Example 2

0 1 2
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Detail

Theorem. Let              be a multiscale analysis of         . Then 
there exists a single function                such that

is an orthonormal base of      . 

is called orthogonal wavelet. Its explicit form is written as 
recursive difference:

where       is called the filter mask.
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Summary: Spaces

Relations between signals and spaces in multiscale analysis.
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Summary: Subband Coding

The original signal encompasses a certain frequency range.

frequencyhighlow
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Summary: Subband Coding

Subband coding: 
In each iteration, half the resolution is ‚separated out‘ as 
details. The remaining approximation is then further 
subdivided. In each iteration, the scaling function determines 
the remaining approximation that sub-summarizes all the yet 
unconsidered parts.

frequency

1st iteration

highlow
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Summary: Subband Coding

Subband coding: 
In each iteration, half the resolution is ‚separated out‘ as 
details. The remaining approximation is then further 
subdivided. In each iteration, the scaling function determines 
the remaining approximation that sub-summarizes all the yet 
unconsidered parts.

frequency

2nd iteration

highlow
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Summary : Subband Coding

Subband coding: 
In each iteration, half the resolution is ‚separated out‘ as 
details. The remaining approximation is then further 
subdivided. In each iteration, the scaling function determines 
the remaining approximation that sub-summarizes all the yet 
unconsidered parts.

frequency

3rd iteration

highlow
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Summary: Tiling

Tiling the time-scale domain for the dyadic wavelet transform.

time

frequency

high

low
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Summary: Tiling

Tiling the time-scale domain for the dyadic wavelet transform.

time

frequency

1st iteration

high

low
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Summary: Tiling

Tiling the time-scale domain for the dyadic wavelet transform.

time

frequency

2nd iteration

high

low
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Summary: Tiling

Tiling the time-scale domain for the dyadic wavelet transform.

time

frequency

3rd iteration

high

low
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1.4 Transformation Based on the Haar 
Wavelet

time

amplitude

1

2

3

4

original signal

graphical representation

1 2 2 3 2 3 4 1 1 2 2 1 1

coefficients in time

A signal shall be approximated with fewer coefficients. An 
easy approach is to take the average of each two
neighboring coefficients as approximation. The remaining 
error then is the difference of the ‚true‘ values towards these 
approximations.
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Haar Transform (I)

time

amplitude

1

2

3

4

1 2 2 3 2 3 4 1 1 2 2 1 1

Filter for the computation of the average: 

1st iteration: approximation

1.5 2.5 2.5 2.5 1.5 1.5 approximation

original signal

original signal
approximation

1/2 1/2
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Haar Transform (II)

time

amplitude

1

2

3

4

1 2 2 3 2 3 4 1 1 2 2 1 1

1st iteration: detail

1.5 2.5 2.5 2.5 1.5 1.5 approximation

original signal

original signal
approximation

detail

-0.5 -0.5 -0.5 1.5 -0.5 0.5 detail

Filter for the computation of the detail: 1/2 -1/2
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Haar Transform (III)

Synthesis: the information of the original signal can be 
recovered with synthesis filters.

Thus: 
• 1.5*1+(-0.5)*1 = 1 (synthesis of 1. entry)

• 1.5*1+(-0.5)*(-1) = 2 (synthesis of 2. entry)

• 2.5*1+(-0.5)*1 = 2 (synthesis of 1. entry)

• 2.5*1+(-0.5)*(-1) = 3 (synthesis of 2. entry)

• ......

1 1 synthesis filter for 1st signal entry

synthesis filter for 2nd signal entry1 -1
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Haar Transform (IV)

time

amplitude

1

2

3

4

1 2 2 3 2 3 4 1 1 2 2 1 1

2nd iteration: approximation

1.5 2.5 2.5 2.5 1.5 1.5 approximation (1st)

original signal

original signal
approximation (1st)
approximation (2nd)

approximation (2nd)2 2.5 1.5

Iteration on the approximation. 
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In total, we have used four filters for analysis and synthesis 
of a signal:

• approximation:
• detail:

• synthesis 1:
• synthesis 2: 

In literature, the Haar filter is sometimes referred to as:

here, the factor         has been shifted from the analysis to 
the synthesis. 
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Haar Transform (V)

1 1

1 -1

1/2 1/2

1/2 -1/2

2/1

2/1

2/1

2/1

2/1

2/1

2/1−

2/1−

2/1
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General filters are longer than the two entries of 
the Haar filter. The approach, however, to use 
two analysis and two synthesis filters, holds in 
general. 

Even the longer filters are shifted by 2 signal 
coeffients.
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Convolution-based Transform

1 2 2 3 2 3 4 1 1 2 2 1 1 original signal

c0 c1 c2 c3

c0 c1 c2 c3

c0 c1 c2 c3

Successive convolution of the 
signal with a low-pass filter (i.e., 
approximation) of 4 entries.

c3 -c2 c1 -c0

c3 -c2 c1 -c0

c3 -c2 c1 -c0

Successive convolution of the 
signal with a high-pass filter
(i.e., detail) of 4 entries.
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Until now: multiscale analysis in one dimension

Application of the wavelet transform on still 
images and video requires an approximation 
into multiple dimensions.

• Separable approach: successive application of a one-
dimensional filter into one dimension and afterwards into a 
second dimension is mathematically identical to a two-
dimensional transform from the outset.

• Non-separable approach: the real idea of multiple 
dimensions. Current research of groups around Kovacevic, 
Vetterli, and Tay.

Here: separable approach.
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2.1 Wavelets in Multiple Dimensions
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The separable wavelet transform on still images is 
defined via the tensor product, i.e.,                    . 
This two-dimensional space decomposes into
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Separability

V1 x V1

W1 x V1

V1 x W1

W1 x W1

idea visualization
Frequency location
in Fourier domain
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In the following iteration steps, the standard 
decomposition iterates on all approximation spaces:
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Standard Decomposition

4 iterations 4 iterations - work in progress
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In the following iteration steps, the standard 
decomposition only iterates the purely low-pass 
filtered approximations:
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Non-standard Decomposition

4 iterations 4 iterations
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• Standard decomposition:
– more fine-grained: it realizes a better localization of a 

signal’s energy in the approximation.

• Non-standard decomposition:
– less complex,
– mostly used in image coding applications.
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Comparison

Frequency location
in Fourier domain

Non-standard, 3 iterations

Standard, 3 iterations
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• A digital filter is applied to a signal by convolution. 
In order to result in a mathematically correct, 
reversible wavelet transform, each signal coefficient 
must enter into ILOWHUBOHQJWK�� calculations of 
convolution. 

• Thus, each filter longer than Haar (i.e., 2 entries), 
requires a boundary extension.

• Boundary treatment more important the shorter the 
signal under consideration.

• Common policies:
– circular convolution
– padding
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2.2 Signal Boundary
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• Idea: ‘wrap’ the signal around

• Circular convolution is the only boundary policy that 
maintains the number of coefficients, thus simplifying 
storage handling.

• However, the time-information contained in the time-
scale domain ‘blurs’.
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Circular Convolution
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• Idea: ‘pad’ the boundary with additional coefficients

• Various padding policies: zero padding, constant 
padding, mirror padding, spline padding, ...

• Padding policies expand the transformed domain!

• Time-information of the time-scale domain is maintained.
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Padding Policies
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• So far, we have discussed wavelet analysis, i.e., the 
decomposition of a signal into its coefficients in the time-
scale domain.

• Now: visualization of the time-scale domain.

• Wavelet-transformed coefficients are not pixel values. 
Consideration of
– normalization and
– range
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2.3 Painting the Time-scale Domain

analysis synthesis
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Normalization

Two possible realizations of ‚painting the time-scale 
domain‘:
– No normalization:

• details vary about zero, but this means black in image coding,
• approximation is lifted by factor of               (for Daubechies 

filters). Thus, the luminance is lifted by       in each iteration.

– Normalization:
• lift the details by 128, i.e., by a medium gray color,
• divide the approximations through         before painting.

Thus, all the images of the time-scale domain in this tutorial 
are ‘cheated’ since they are edited before visualization.
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We have seen that boundary padding policies result in an 
enlarged time-scale domain. 
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Growing Spatial Range with Padding

All coefficients in 
the time-scale 
domain with zero 
padding

All coefficients in 
the time-scale 
domain with 
mirror padding

...and ‚what we 
would prefer for 
painting‘.

Iteration Size of ‚upper left corner‘
level Haar Daub-20
1 128 x 128 147 x 147
2 64 x   64 93 x   93
3 31 x   32 66 x   66
... ... ...
8 1 x     1 39 x   39
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• A different technique to construct biorthogonal wavelets 
and multiresolution has been introduced by Sweldens: 
lifting scheme or second generation wavelets.

• Advantages:
– amount of floating point operations can reduced by a factor of 2,
– allows fully in-place-calculation,

– is not defined via the Fourier transform, thus is easier to 
understand.
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2.4 Lifting
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Look at the Haar transform from a different perspective.
– Signal      with sampling distance 1 shall again be decorrelated.

– By subsampling the even samples of the original signal, one 
obtains a new sequence of approximations: 

– A trivial way to capture the lost information is to say the detail is 
simply contained in the odd samples:

– A more elaborate way is to recover the original samples from the
subsampled coefficients       . Then, the odd samples indicate to 
what extend the signal ‘fails to be linear’: 

The expected value of these details is small.
– In order to preserve the average value of all coefficients at each 

level, i.e.,                                    the approximations are lifted again: 
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The wavelet transform on each level now consists of two 
stages:

This is demonstrated in the following scheme:
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Example (II)
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The synthesis is simply the reverse of the two equations 
above.

The filters induces by this lifting example are: 
– high-pass filter (details):  
– low-pass filter (approx.):

This is the default reversible wavelet transform Daub-5/3 
suggested in JPEG2000. An irreversible wavelet transform 
is defined as well, denoted Daub-9/7.
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Example (IV)

Filter coefficients of the two default wavelet filter banks of JPEG2000.

Claudia Schremmer / University of Mannheim / Germany page 50P
ar

t 
III

: 
M

u
lt

im
ed

ia
A

p
p

lic
at

io
n

s
3.

1 
JP

E
G

20
00

3.1 JPEG2000

• The JPEG2000 has been released on January 2, 2001
• Based on the wavelet transform

Part Content

1 JPEG2000 Still Image Coding
2 Extensions
3 Motion-JPEG2000
4 Conformance
5 Reference Software
6 Compound Image File Format
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Design Goals

• Better performance at lower bitrates.
• Lossy and lossless compression.
• Progressive data transmission.
• Definition and coding of regions-of-interest.
• Random access.
• Robustness towards bit errors.
• Open architecture.
• Possibility of content description.
• Transparency.
• Watermarking.
• Support of images of arbitrary components.
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Architecture

• Image is decomposed into color components which 
are processed separately.

• Each color component is subject to a tiling process.
• Each tile is subject to the wavelet transform

– standard reversible filter: Daub-5/3  (see Section 2.5) 
– standard irreversible filter: Daub-9/7 (see Section 2.5)

• The different scales are ordered such that they 
describe specific regions of the image. The resulting 
blocks are called subbands.

• Subbands are quantized and stored in code blocks.
• The bit layers of the code blocks are entropy 

encoded.
• Specific treatment of regions-of-interest.
• A file format allows the storage of the data stream.
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Performance
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Coding Detail (I)

Standard wavelet transform with interleaved 
storage.
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Coding Detail (II)

Interleaved storage in two dimensions.
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Regions-of-interest in JPEG2000

Due to the time (or: location) information that 
subsists in the time-scale domain, it is possible to 
track specific regions-of-interest (ROI) in their 
encoded representation.
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What is of interest?

• The investigation of ROI requires a pragmatic 
approach of the term ‘interest’. 
– regions of higher coding quality (RHQ),

– regions of minor coding quality (RMQ).

• Classifications for segmentation
– according to information content:

– according to visual perception
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Shape of ROI segments

• Shapes might be arbitrary like in the previous 
examples, or pre-defined:

• Trade-off between coding complexity and utility.
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MAXSHIFT-method

JPEG2000: MAXSHIFT-method defines the (arbitrary) 
shape of a ROI.
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3.2 Hierarchical Video Coding

• A major drawback for the rapid deployment of 
streaming video in the internet is its heterogeneity.

• Solutions:
– redundant coding or
– hierarchical coding

Layered data transmission in a heterogeneous network. The 
sender sends the base layer plus all enhancement layers. Each 
receiver decides how many layers he/she can receive.
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Heuristic for Comparison

Pyramid encoding Layered DCT frequencies

Bit layering Layered wavelet transform frequencies
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Layering Policies

Reasonable layering of wavelet-transformed data 
into base layer and enhancement layers can be 
carried out according to three policies:

Policy 1: Blockwise.
Layering and its 
respective synthesis 
work the other way 
round than analysis.

Policy 2: max Coeffici-
ents. The base layer 
should look for those 
coeffs with the highest 
(absolute) values, i.e., 
above a certain 
threshold. Subsequently 
smaller thresholds 
define the following 
layers.

Policy 3: Mixture.
First transmit the 
approximation and 
then subsequently fill 
the layers according to 
policy 2.
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Different Perceptions

original frame

Synthesis with 6.25% of the information in the time-scale domain:
Max. coefficients.Blockwise layering. Mixture.
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Open Issues

• Reliable estimation of the bitrate for different 
coding techniques, including

– Huffman encoding,

– entropy encoding,

• Thorough comparison based on the bitrate.

• Consideration of the network: adaptive coding 
according to the actual traffic.
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Conclusion

This tutorial on wavelets in theory and applications was 
subdivided into three major parts:

• Part I:
Overview on the mathematical background of multiscale 
analysis and the wavelet transform.

• Part II:
Discussion of implementation issues.

• Part III:
Examples of wavelet applications in multimedia.
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