2.3 Video Compression

2.3.1 MPEG

committee of ISO). MPEG stands for Moving Picture Experts Group (a

CD-ROM. in the U.S. and the rate that can be streamed from a Goal of MPEG-1: compress a video signal (with audio) to a data stream of 1.5 Mbit/s, the data rate of a T1 link

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

2.3 Video Compression

2.3-1

Goals of the MPEG-1 Compression Algorithm

- good image quality for the video Random access within 0.5 s while maintaining a
- Fast forward / fast rewind
- Possibility to play the video backwards
- Allow easy and precise editing

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 2.3 Video Compression 2.3-2

MPEG Frame Types

Four types of frames:

I-Frame (Intra Frame)

Intra-coded full image, very similar to the JPEG image, encoded with DCT, quantization, run-length coding and Huffman coding

P-Frame (Predicted Frame)

Uses delta encoding. The P frame refers to preceeding I- and P-frames. DPCM encoded macroblocks, motion vectors possible.

B-Frame (Interpolated Frame)

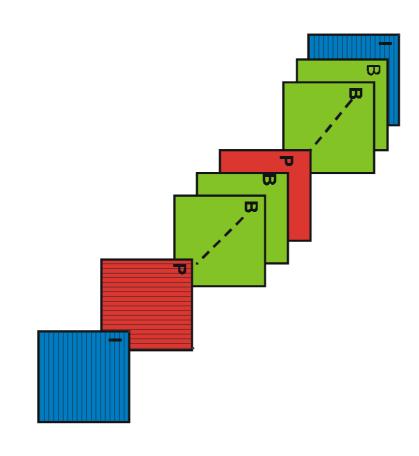
"bidirectionally predictive coded pictures,.. The B frame refers to preceeding and succeeding frames, interpolated the data and encodes the differences.

D-Frame

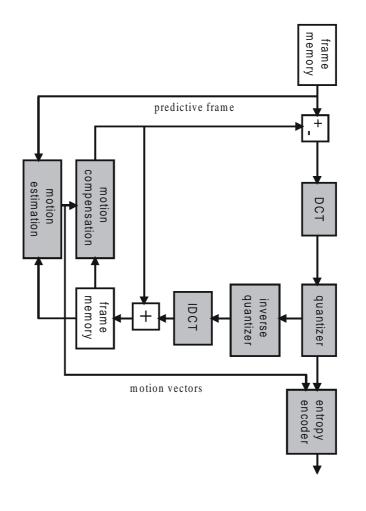
"DC coded picture", only the DC coefficient of each block is coded (upper left-hand corner of the matrix), e.g., for previews.

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.3 Video Compression	
2.3-3	

A Graduate Course on Multimedia Technology


© Wolfgang Effelsberg, Ralf Steinmetz

2.3 Video Compression


2.3-4

"Group of Pictures" in MPEG

The sequence of I, P and B frames is not standardized but can be chosen according to the requirements of the application. This allows the user to chose his/her own compromise between video quality, compression rate, ease of editing, etc.

MPEG Encoder

A Graduate Course on Multimedia Technology

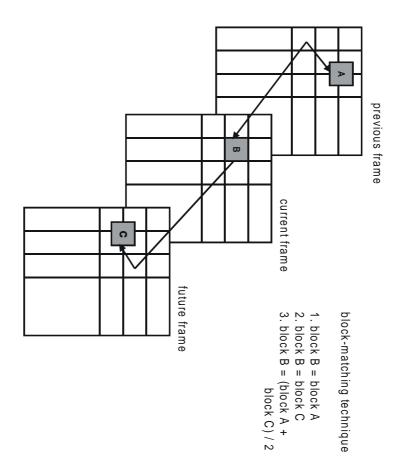
© Wolfgang Effelsberg, Ralf Steinmetz

2.3 Video Compression

2.3-5

MPEG Decoder

motion compensation


A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz

2.3 Video Compression

2.3-6

Temporal Redundancy and Motion Vectors

"Motion Compensated Interpolation"

On the encoder side the search range can be chosen as a parameter: the larger the search range, the higher the potential for compression, but the longer the runtime of the algorithm.

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.3 Video Compression	
2.3-7	

MPEG-2

MPEG-2 extends MPEG-1 for higher bandwidths and better image qualities, up to HDTV. It was developed jointly by ISO and ITU-T (where the standard is called H.262).

MPEG-2 defines scalable data streams which allow receivers with different bandwidth and processing power to receive and decode only parts of the data stream.

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.3 Video Compression	
2.3-8	

Scalability in MPEG-2 (1)

- "SNR scalability": Each frame is encoded in several layers. A receiver who only decodes the base layer will get a low image quality. A receiver decoding additional (higher) layers gets a better image quality. An example is color subsampling: the base layer contains only one quarter of the values for the U and V components, compared to the Y components. The enhancement layer contains the U and V components in full resolution, for better color quality.
- "Spatial scalability": The frames are encoded with different pixel resolutions (e.g., for a standard TV set and for an HDTV TV set. Both encodings are transmitted in the same data stream.

Scalability in
alability
~
~
₹.
3
M
ð
? (2

- "Temporal scalability": The base layer contains only very few frames per second, the enhancement layers additional frames per second. Receivers decoding the higher layers will thus get a higher frame rate (i.e., a higher temporal resolution).
- "Data partinioning": The data stream is
 decomposed into several streams with different
 amounts of redundany for error correction. The most
 important parts of the stream are encoded in the
 base layer, e.g., the low-frequency coefficients of the
 DCT and the motion vectors. This layer can then be
 enriched with an error correcting code for better error
 resilience than the enhancement layers where errors
 are not as harmful.

	Ralf Steinmetz	Multimedia Technology
 2.3 Video Compression	© Wolfgang Effelsberg,	A Graduate Course on

A Graduate Course on © Wolfgang Effelsberg, 2.3 Video Compression 2.3-10 Multimedia Technology

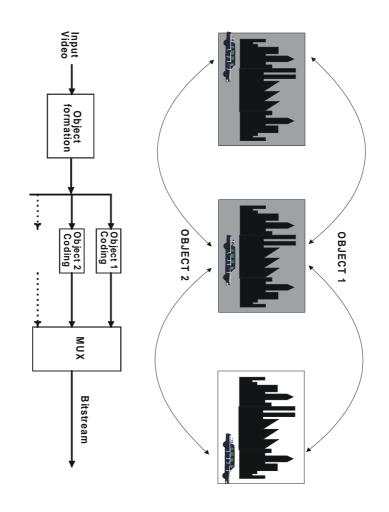
MPEG-2 Video Profiles

			- 1) : =	
	Simple profile	Main profile	SNK scalable	Spatially	High profile
			profile	scalable pro-	
	no B frames			file	
	not scalable	B frames	B frames	B frames	B frames
		not scalable	SNR scaling	spatial scal-	spatial or
				ing	SNR scaling
High level		<=80 Mbits/s			<=100
1920x1152x60					Mbits/s
High-1440 level		<=60 Mbits/s		<=60 Mbits/s	<=80 Mbits/s
1440x1152x60					
Main level	<=15 Mbits/s	<=15 Mbits/s	<=15 Mbits/s		<=20 Mbits/s
720x576x30					
Low level		<=4 Mbits/s	<=4 Mbits/s		
352x288x30					

A Graduate Course on © Wolfgang Effelsberg, 2.3 Video Compression 2.3-11

Multimedia Technology Ralf Steinmetz

MPEG-4 (1)

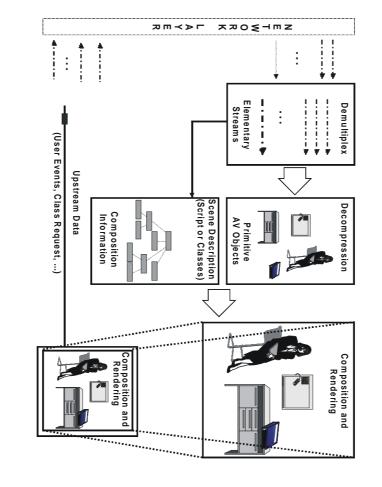

Originally ISO and ITU-T had planned a standard MPEG-3 for HDTV at very high data rates. This work was later integrated into MPEG-2. This explains why there is no MPEG-3 standard.

MPEG-4 was originally planned for video at very low bandwidths (e.g., for wireless PDAs). Later the ISO committee decided to concentrate on an entirely new technology, namely encoding in the form of sets of objects overlaid to form an image. The encoding technique can be chosen separately for each object. This object-oriented encoding also opens up much richer possibilities for processing on the receiver side.

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.3 Video Compression	
2.3-12	

MPEG-4 (2)

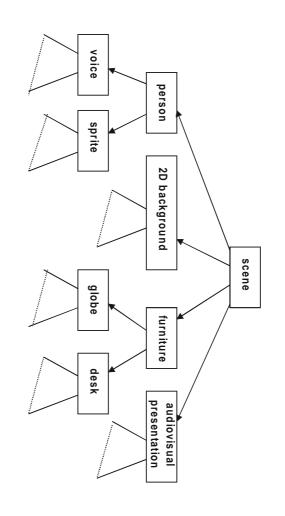
background is static. Separate encoding of background and foreground. The



A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 2.3 Video Compression

2.3-13

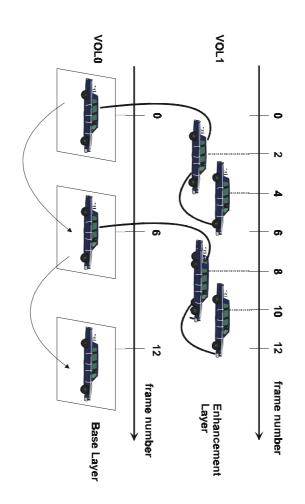
MPEG-4 (3)


Decoding of an MPEG-4 system stream

A Graduate Course on Multimedia Technology © Wolfgang Effelsberg, Ralf Steinmetz 2.3 Video Compression 2.3-14

MPEG-4 (4)

Object hierarchy for our decoding example



A Graduate Course on © Wolfgang Effelsberg, 2.3 Video Compression Multimedia Technology Ralf Steinmetz

2.3-15

MPEG-4 (5)

Scalability by "layered encoding" in MPEG-4

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.3 Video Compression	
2.3-16	

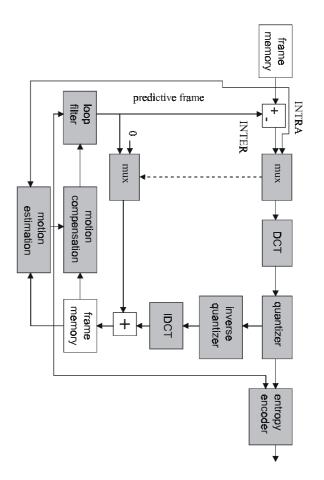
2.3.2 ITU Recommendation H.261

Also known as "p*64 kbit/s"

- A video coding technique for video data at p x 64 kbit/s.
- Originally developed for ISDN
- Parameter p is chosen as follows:
- p in [1,30]
- p small implies low image quality at low data rates.
 An example is video telephony with p=1 or p=2.
- p larger implies better video quality at higher data rates. Typical is p=6 for company video conferencing over 6 parallel ISDN B-channels.
- Intraframe-Coding: based on the DCT. Very similar to JPEG but there is only one quatization factor for all values of the block (no quantization table).
- Interframe-Coding: very similar to the P frames in MPEG-1.
- There are no B frames in H.261.

Multimedia Technology	A Graduate Course on
Ralf Steinmetz	© Wolfgang Effelsberg,
	2.3 Video Compression
	2.3-17

Important Parameters of H.261


	CIF	QCIF
	(Breite x Höhe)	(Breite x Höhe)
~	352 x 288	176 x 144
C_b	176 x 144	88 x 72
C_{r}	176 x 144	88 x 72

Hierarchy of the structuring elements of the data stream:

	block	macro block	group of blocks	picture	Structure Element
the DCT)	8 x 8 pixels (unit for	16 x 16 Y, 8 x 8 C _b , C _r	33 macroblocks	a full frame	Description

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.3 Video Compression	
2.3-18	

The H.261 Encoder

A Graduate Course on © Wolfgang Effelsberg, 2.3 Video Compression 2.3-19

Multimedia Technology Ralf Steinmetz

Status of H.261

Very widely used in practice, many products available in the market from many manufacturers. Has replaced earlier proprietary standards for video telephony.

Pure software implementations are available as well as stand-alone hardware solutions ("black boxes") and combined solutions, mainly for the PC.

Manuficala Lecillores	A Graduate Course on
I A CHAILLIGE	© Wolfgang Effelsberg,
	2.3 Video Compression
	2.3-20

11.203

H.263 is the successor standard of H.261 at ITU-T, incorporating much of the experience gained with MPEG-1.

Some differences between H.263 and H.261 are:

- There are five image sizes instead of two.
- There is a bi-directional interpolation where exactly one B frame follows each P frame.
- There are negotiable options that allow to tailor the algorithm for specific applications. For example, arithmetic coding can be chosen instead of runlength/Huffman coding in the entropy encoding step.

A Graduate Course on Multimedia Technology	
© Wolfgang Effelsberg, Ralf Steinmetz	
2.3 Video Compression	
2.3-2	