2.2 Still Image Compression **Techniques** Techniques **2.2 Still Image Compression**

2.2.1 Telefax

International de Téléphonie et Télégraphie). former times: CCITT = Commitée Consultatif the International Telecommunications Union (ITU-T) (in New standards in the telecommunication are defined by former times: CCITT = Commitée Consultatif the International Telecommunications Union (ITU-T) (in International de TéléphonieNew standards in the telecommunication are defined by et Télégraphie).

of the early standards for still image compressions The standard for lossless Telefax compression was one of the early standards for still image compressions. The standard for lossless Telefax compression was one

standard as two-tone (black-and-white) pictures. As a most cases, and thus run-length encoding is efficient pixels. Obviously, runs will be much larger than 1 in example shows a part of a line of black-and-white result any pixel can be represented by one bit. The Images are interpreted by the Group 3 compression example shows a part of a line of black-and-white standard as two-tone (black-and-white) pictures. As a most cases, and thus run-length encoding is efficient. pixels. Obviously, runs will be much larger than 1 in result any pixel can be represented by one bit. The Images are interpreted by the Group 3 compression

Example:

\triangleright Multimedia Technology Graduate Courseon a Moltelsberg Effelsberg. 2. © Wolfgang Effelsberg,
Ralf Steinmetz © Wolfgang Effelsberg, Ralf Steinmetz Part 2.2 Compression, 2.2-1

Fax Standards of ITU-T **Fax Standards of ITU-T**

Standard T.4 **Standard T.4**

lines Group 3) for error-prone lines, especially telephone First passed in 1980, revised in 1984 and 1988 (Fax Group 3) for error-prone lines, especially telephone First passed in 1980, revised in 1984 and 1988 (Fax

Two-tone (black-and-white) images of size A4 Two-tone (black-and-white) images of size A4

vertical, 1728 samples per line vertical, 1728 samples per line Resolution: 100 dots per inch (dpi) or 3,85 lines/mm Resolution: 100 dots per inch (dpi) or 3,85 lines/mm

Objective: **Objective:**

(one A4 page per minute) Transmission at 4800 bits/s over the telephone line (one A4 page per minute) Transmission at 4800 bits/s over the telephone line

Standard T.6 **Standard T.6**

or digital storage. First passed in 1984 (Fax Group 4) for error-free lines or digital storage. First passed in 1984 (Fax Group 4) for error-free lines

Compression Standards for Telefax (1) **Compression Standards for Telefax (1)**

Telefax Group 3, ITU-T Recommendation T.4: **Telefax Group 3, ITU-T Recommendation T.4:**

First approach: Modified Huffman Code (MH) **First approach: Modified Huffman Code (MH)**

- Every image is interpreted as consisting of lines of pixels Every image is interpreted as consisting of lines of
- For every line the run-length encoding is calculated. calculated. For every line the run-length encoding is
- Huffman coded with a standard table The values of the run-length encoding will be The values of the run-length encoding will be Huffman coded with a standard table.
- distributions are quite different. Black an white runs will be encoded using different Huffman codes because the run length distributions are quite different. Huffman codes because the run length Black an white runs will be encoded using different
- synchronization in case of bit transmission errors inserted in the end of every line. This enables re-For error detection an EOL (end-of-line) code is synchronization in case of bit transmission errors. inserted in the end of every line. This enables re-For error detection an EOL (end-of-line) code is

Compression Standards for Telefax (2) **Compression Standards for Telefax (2)**

Second approach : Modified Read (MR) Code **Second approach : Modified Read (MR) Code**

- The pixel values of the last line are used to predict the values of the current line the values of the current line The pixel values of the last line are used to predict
- code are used (same as for MH). Then run-length encoding and a static Huffman code are used (same as for MH). Then run-length encoding and a static Huffman
- The EOL code is also used The EOL code is also used.

•

error propagation. The MH and MR coding alternates in order to avoid error propagation. The MH and MR coding alternates in order to avoid

Huffman-Table for Telefax Group 3 (excerpt) **Huffman-Table for Telefax Group 3 (excerpt)**

Telefax Group 4 Telefax Group 4

Telefax Group 4, ITU-T Recommendation T.6 **Telefax Group 4, ITU-T Recommendation T.6**

Coding techniques: Modified Modified Read Code
(MMR) Coding techniques: Modified Modified Read Code

• Simplification of the MR-Codes; there are no error compression rate. detection mechanisms on order to improve the compression rate. detection mechanisms on order to improve the Simplification of the MR-Codes; there are no error

Typical Compression rates: **Typical Compression rates:**

more suitable. schemes such as adaptive arithmetic coding would be because the the length of the runs is very short. Other For photos (and the like) the compression rate is low more suitable. schemes such as adaptive arithmetic coding would be because the the length of the runs is very short. Other For photos (and the like) the compression rate is low

2.2.2 Block Truncation Coding (BTC) **2.2.2 Block Truncation Coding (BTC)**

monochrome images. Every pixel is represented by a gray This simple coding algorithm is used in the compression of value between 0 (black) and 255 (white). value between 0 (black) and 255 (white). monochrome images. Every pixel is represented by a gray This simple coding algorithm is used in the compression of

The BTC Algorithm **The BTC Algorithm**

1. Decompose the image into blocks of size n x m pixels. 1.Decompose the image into blocks of size n x m pixels.

2. For each block calculate the mean value and the standard 2.For each block calculate the mean value and the standard deviation as follows: deviation as follows:

$$
\mu = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} Y_{i,j}
$$

$$
\sigma = \sqrt{\frac{1}{nm}} \sum_{i=1}^{n} \sum_{j=1}^{m} (Y_{i, j} - \mu)^2
$$

where Y_{ij} is the brightness of the pixel is the brightness of the pixel.

 $\dot{\bm{\omega}}$ Calculate a bit array B of size n x m as follows: Calculate a bit array B of size n x m as follows:

$$
B_{i,j} = \begin{cases} 1 \dots & \text{if } & Y_{i,j} \leq \mu \\ 0 \dots & \text{else} \end{cases}
$$

The BTC Algorithm (continued)) **The BTC Algorithm (continued))**

4.Calculate two gray scale values for the darker and the brighter pixels: the brighter pixels: Calculate two gray scale values for the darker and

$$
a=\mu-\sigma\sqrt{p/q}
$$

$$
b = \mu + \sigma \sqrt{q/p}
$$

p is the number of pixels having a larger brightness pixels having a smaller brightness. than the mean value of the block, q is the number of than the mean value of the block, q is the number of pixels having a smaller brightness. is the number of pixels having a larger brightness

<u>ጣ</u> Output: (Bit matrix, *a, b*) for every block.

Decompression with BTC **Decompression with BTC**

calculated as follows: For every block the gray value of each pixel will be calculated as follows: For every block the gray value of each pixel will be

$$
Y^{i}, j = \begin{cases} a \dots if & Bi, j = 1 \\ b \dots else & \end{cases}
$$

Compression rate example **Compression rate example**

 $\frac{11}{5}$ compression rate is 4:1. compression rate is 4:1. reduction from 16 bytes to 4 bytes, I.e., the reduction from 16 bytes to 4 bytes, I.e., the

2.2.3 Color Cell Compression **2.2.3 Color Cell Compression**

by compressing the three color components separately.
However, the Color Cell Compression technique leads compression of color images. In principle, BTC can be to a better compression rate. to a better compression rate. used for color images rather than for gray scale images Color cell compression (CCC) is a algorithm for the However, the Color Cell Compression technique leads by compressing the three color components separately. used for color images rather than for gray scale images compression of color images. In principle, BTC can be Color cell compression (CCC) is a algorithm for the

Color Models Color Models

in white. intensities of the color components red, green and blue model. The color value of a pixel is the sum of the The maximum intensity of all three components results The maximum intensity of all three components results The classical color model for the computer is the RGB The classical color model for the computer is the intensities of the color components red, green and blue. . The color value of a pixel is the sum of the

vertical color vectors. The color value of an pixel can be easily converted from model to model. luminance (brightness) of the pixel, U and V are two easily converted from model to model. vertical color vectors. The color value of an pixel can be In the YUV model, Y represents the value of the luminance (brightness) of the pixel, U and V are two **YUV model, Y** represents the value of the

RGB-Model

YVU-Mode

chrominance components scale version of the image can be created very fast. component can differ from the compression of the Another point is that the compression of the luminance luminance is directly available. That means that a gray A advantage of the YUV model is that the value of the chrominance components. component can differ from the compression of the Another point is that the compression of the luminance scale version of the image can be created very fast. A advantage of the YUV model is that the value of the luminance is directly available. That means that a gray

The CCC Algorithm **The CCC Algorithm**

- ... Decompose the image into blocks of size n x m Decompose the image into blocks of size n x m pixels.
- The brightness of a pixel is computed as follows The brightness of a pixel is computed as follows: $Y = 0.3$ Pred + 0.59Pgreen + 0.11P_{blue}

<u>ب</u>

white Y=0 is equivalent to black, Y=1 is equivalent to Y=0 is equivalent to black, Y=1 is equivalent to

3.value of the pixel as follows: For c = red, green, blue calculate the mean color value of the pixel as follows: For c = red, green, blue calculate the mean color

$$
a_c = \frac{1}{q} \sum_{Y_{i,j} \leq \mu} P_{c,i,j}, \qquad b_c = \frac{1}{p} \sum_{Y_{i,j} \succ \mu} P_{c,i,j}
$$

brightness larger or smaller than the mean value, respectively. brightness larger or smaller than the mean value, Again, *q* respectively. and *p* are the numbers of pixels with a

The CCC Algorithm (continued) **The CCC Algorithm (continued)**

4.Calculate a bit array B of size n x m as follows:

$$
B_{i,j} = \begin{cases} 1 \dots & if \quad Y_{i,j} \leq \mu \\ 0 \dots & else \end{cases}
$$

- <u>ጣ</u> the Color Lookup Table (CLUT). The color values the Color Lookup Table (CLUT). table. We get the values bgreen, bblue) are now quantized onto a color lookup *a* $=$ (a_{red}, a_{green}, a_{blue}) and *a'* and *b'* as an index for *b* $=$ $(b$ red,
- 6.Output: (bit matrix, *a'*, *b'*) for every block

follows: For every block the decompression algorithm works as For every block the decompression algorithm works as

$$
P^{i, j} = \begin{cases} CLUT[a'] \dots if & B_{i, j} = 1 \\ CLUT[b'] \dots else \end{cases}
$$

Usage of the Color Lookup Table in CCC **Usage of the Color Lookup Table in CCC**

Extended Color Cell Compression (XCCC) **Extended Color Cell Compression (XCCC)**

improvement of the compression rate. This method is an extension of CCC for further improvement of the compression rate. This method is an extension of CCC tor trither

Idea

algorithm works recursively (invented at U. Mannheim). algorithm tries to code a large block with CCC. If the given threshold the block is divided into four parts. The difference to the true color values is greater than a Use a hierarchy of block sizes. In the first step the algorithm works recursively (invented at U. Mannheim). given threshold the block is divided into four parts. The difference to the true color values is greater than a algorithm tries to code a large block with CCC. If the Use a hierarchy of block sizes. In the first step the

2.2.4 A Brief Introduction to **2.2.4 A Brief Introduction to Transformations Transformations**

Motivation for Transformations **Motivation for Transformations**

maintaining a good image quality Improvement of the compression ratio while maintaining a good image quality. Improvement of the compression ratio while

What is a transformation? **What is a transformation?**

- Mathematically: a change of the base of the representation representation Mathematically: a change of the base of the
- Informally: representation of the same data in a different way. different way. Informally: representation of the same data in a

data in the original domain. human visual (or auditive) system than leaving our compression algorithms: In the frequency domain, Motivation for the use of transformations in **data in the original domain.** leaving out data is often less disturbing to the compression algorithms: **human visual (or auditive) system than leaving our leaving out data is often less disturbing to the** Motivation for the use of transformations in **In the frequency domain,**

The Frequency Domain **The Frequency Domain**

signal. the amplitudeswith Which the frequencies occur in the frequencies. Thecoefficients of the frequencies specify two-dimensional) isrepresented as an overlay of base In the frequency space the signal (one-dimensional or

The Fourier Transform **The Fourier Transform**

The Fourier transform of a function The Fourier transform of a function fis defined as is defined as follows:

$$
\hat{f}(t) = \int f(x)e^{-2\pi ix} dx
$$

where *e* can bewritten as

$$
e^{ix} = \cos(x) + i \sin(x)
$$

Note:

ጋ
አ *sin* part makes the function complex. If we only use the *cos* part the transform remains real-valued.

Overlaying the Frequencies Overlaying the Frequencies

approximates the original function. frequency must be chosen such that the overlay (sum) A transform asks how the amplitudefor each base

One-Dimensional Cosine Transform **One-Dimensional Cosine Transform**

follows: The Discrete Cosine Transform (DCT) isdefined as

$$
S_u = \frac{1}{2} C_u \sum_{x=0}^{7} s_x \cos \frac{(2x+1)u\pi}{16}
$$

with

$$
C_u = \begin{cases} \frac{1}{\sqrt{2}} \text{ for } u = 0\\ \frac{1}{\sqrt{2}} \text{ otherwise} \end{cases}
$$

 \triangleright Multimedia Technology Graduate Courseon a Moltelsberg Effelsberg. 2. © Wolfgang Effelsberg,
Ralf Steinmetz © Wolfgang Effelsberg, Ralf Steinmetz Part 2.2 Compression, 2.2-21

Example for a 1D Approximation (1) **Example for a 1D Approximation (1)**

approximated $\mathsf{\acute{e}}$ the coefficients of a 1D **The** following one-dimensional signal $\overline{\omega}$ to be $-$ DCT \leq eight basefrequencies.

 \triangleright

Example forExample for a 1D Approximation (2) **a 1D Approximation (2)**

approximation. Some of the DCT kernels to be used in the approximation. Some of the DCT kernels to be used in the

Example forExample for a 1D Approximation (3) **a 1D Approximation (3)**

Example forExample for a 1D Approximation (4) **a 1D Approximation (4)**

2.2.5 JPEG **2.2.5 JPEG**

commonly referred to under the name of the group. compression algorithm for still images which is working group of ISO) has developed a very efficient working group of ISO) has developed a very efficient The Joint Photographic Experts Group (JPEG, a commonly referred to under the name of the group. compression algorithm for still images which is The Joint Photographic Experts Group (JPEG, a

Compression is done in in four steps: Compression is done in in four steps:

- <u>. .</u> Image preparation Image preparation
- <u>ب</u> Discrete Cosine Transform (DCT) Discrete Cosine Transform (DCT)
- $\ddot{\bm{\omega}}$ Quantization **Quantization**
- Entropy Encoding Entropy Encoding

4.

The DCT-based JPEG Encoder **The DCT-based JPEG Encoder**

Lower Resolution ("Color Subsampling") **Lower Resolution ("Color Subsampling") Coding of the Color Components with a Coding of the Color Components with a**

one chrominance value for each U and V is sampled. subsampling: for each group of four luminance values variations in chrominance. Therefore JPEG uses color a lower resolution than the luminance value Y. The components U and V of a pixel can be represented with variations in chrominance. Therefore JPEG uses human eye is more sensitive to brightness than to One advantage of the YUV color model is that the color one chrominance value for each U and V is sampled. subsampling: for each group of four luminance values human eye is more sensitive to brightness than to a lower resolution than the luminance value Y. The components U and V of a pixel can be represented with One advantage of the YUV color model is that the color

macroblock. U block and one V block of size 8x8 each are called a In JPEG four Y blocks of 8x8 together with one macroblock U block and one V block of size 8x8 each are called a In JPEG four Y blocks of size of 8x8 together with one

JPEG "Baseline" Mode **JPEG "Baseline" Mode**

time domain into the frequency domain. A compression algorithm based on a transform from the time domain into the frequency domain. A compression algorithm based on a transform from the

Image transformation **Image transformation**

separately for every 8x8 pixel block of the image. similar to the Fourier transformation. It is used FDCT (Forward Discrete Cosine Transform). Very separately for every 8x8 pixel block of the image. similar to the Fourier transformation. It is used FDCT (Forward Discrete Cosine Transform). Very

$$
S_{vu} = \frac{1}{4} C_u C_v \sum_{x=0}^{7} \sum_{y=0}^{7} s_{yx} \cos \frac{(2x+1)u\pi}{16} \cos \frac{(2y+1)v\pi}{16}
$$

with

$$
C_u, C_v = \begin{cases} \frac{1}{\sqrt{2}} \text{ for } u, v=0\\ \sqrt{2} \end{cases}
$$

The result are 64 coefficients in the frequency domain. This transformation is computed 64 times per block. The result are 64 coefficients in the frequency domain. This transformation is computed 64 times per block.

Base "Frequencies" for the 2D-DCT **Base "Frequencies" for the 2D-DCT**

"frequencies", as shown below. To cover an entire block of size of 8x8 we use 64 base To cover an entire block of size of 8x8 we use 64 base frequencies", as shown below.

Example of a Base Frequency **Example of a Base Frequency**

on the previous page. corresponding to the base frequency (0,2) shown in the highlighted frame (first row, third column) The figure below shows the DCT kernel The figure below shows the DCT kernel on the previous page. in the highlighted frame (first row, third column) corresponding to the base frequency (0,2) shown

Example: Encoding of an Image with the 2D-**Example: Encoding of an Image with the 2D-**DCT and block size 8x8 **DCT and block size 8x8**

Original

1 Coefficient 1 Coefficient

4 Coefficients 4 Coefficients

16 Coefficients 16 Coefficients

Quantization **Quantization**

allowable values is subdivided into intervals of fixed coefficients. Quantization means that the range of quantization errorsize. The larger the intervalsallowable values is subdivided into intervals of fixed coefficients. Quantization means that the range of The next step in JPEG is $\frac{\mathsf{M}}{\mathsf{S}}$ when the 9
ه quantization of the DCT ≷
ବ chosen, the larger the decompress.

Maximum quantization error: a/2 Maximum quantization error: a/2

Quantization: Quality vs. Compression Ratio **Quantization: Quality vs. Compression Ratio**

Quantization **Quantization**

The Q-factors are specified in a quantization table chosen separately for each DCT coefficient (Q-factor) The Q-factors are specified in a chosen separately for each DCT coefficient (Q-factor). In JPEG the number of quantization intervals can be In JPEG the number of quantization intervals can be quantization table.

Entropy-Encoding **Entropy-Encoding**

encoding (lossless encoding) of the quantized values: The quantization step is followed by an entropy encoding (lossless encoding) of the quantizedThe quantization step is followed by an entropy

- The DC coefficient is the most important one (basic as the difference between the current DC coefficient color of the plock). The DC coefficient is encoded value and the one from the previous block value and the one from the previous block as the difference between the current DC coefficient color of the block). The DC coefficient is encoded The DC coefficient is the most important one (basic (differential coding). (differential coding).
- sequence. sequence. This places coefficients with similar values in This places coefficients with similar values in The AC coefficients are processed in zig-zagorder.

Quantization and the Entropy Encoding **Quantization and the Entropy Encoding**

The non-zero coefficients tend to occur in the upper encoder has a few non-zero and many zero coefficients read out line-by-line because the input to the entropy lower right corner. lower right corner. left-hand corner of the block, the zero coefficients in the left-hand corner of the block, the zero coefficients in the (representing higher frequencies, I.e. sharp edges). (representing higher frequencies, I.e. sharp edges). encoder has a few non-zero and many zero coefficients read out line-by-line because the input to the entropy Zig-zag The non-zero coefficients tend to occur in the upper reordering of the coefficients is better than a

the Fax compression algorithm) the Fax compression algorithm). run length values are then Huffman-encoded (similar to The zig-zag read out maximizes the run-lengths. The run length values are then Huffman-encoded (similar to The zig-zag read out maximizes the run-lengths. The

Multimedia Technology \triangleright Graduate Courseon 2000 Distributor Effects on 2. © Wolfgang Effelsberg,
Ralf Steinmetz © Wolfgang Effelsberg, Ralf Steinmetz Part 2.2 Compression, 2.2-38

 \gg

▭

 $\sqrt{2}$

٦

Different Modes in JPEG **Different Modes in JPEG**

JPEG Decoder

JPEG Decoder

DCT-Based Decoder

 $\frac{1}{1}$

 $\frac{1}{1}$

IDCT

quantizer De-

Pecoder
Decoder

Im age Data Compressed

ī $\begin{array}{c} 1 \\ 1 \\ 1 \end{array}$

 $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}$

 $\begin{array}{c}\n1 \\
1 \\
1\n\end{array}$

 $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array}$

JPEG Sequential Mode **JPEG Sequential Mode**

JPEG Progressive Mode

JPEG Progressive Mode

 Im age Data Reconstructed

Reconstructed

fication Speci-Table

fication Speci-Table

Quantization Factor and Image Quality **Quantization Factor and Image Quality**

Example: Palace in Mannheim Example: Palace in Mannheim

Palace, original image **Palace, original image**

Palace image with Q=6 **Palace image with Q=6**

Palace Example (continued) **Palace Example (continued)**

Palace image with Q=12 **Palace image with Q=12**

Palace image with Q=20 **Palace image with Q=20**

Multimedia Technology

 \triangleright

Graduate Course

on a Moltelsberg Effelsberg. 2.

© Wolfgang Effelsberg, Ralf Steinmetz

© Wolfgang Effelsberg,
Ralf Steinmetz

 Part 2.2 Compression,

2.2-39

Flower Example Flower Example

Flower, original image **Flower, original image**

Example flower (Continuation) **Example flower (Continuation)**

Flower with Q=12 **Flower with Q=12**

Flower with Q=20 **Flower with Q=20**

Flower with Q=6 **Flower with Q=6**

2.2.6 Compression with Wavelets **2.2.6 Compression with Wavelets**

Motivation **Motivation**

Signal analysis and signal compression. Signal analysis and signal compression.

Known: image compression algorithm Known: image compression algorithm

- based on the pixel values (BTC; CCC; XCCC) based on the pixel values (BTC; CCC; XCCC)
- based on transformation in the frequency domain based on transformation in the frequency domain (Fourier-Transformation, DCT) (Fourier-Transformation, DCT)

What is a transformation? What is a transformation ?

- In mathematics: Changing of the bases In mathematics: Changing of the bases
- Interpretation: Representation of another way. Interpretation: Representation of another way.

Example

"Standard" representation of a signal: "Standard" representation of a signal:

- Audio signal with frequencies over the time Audio signal with frequencies over the time
- Image as pixel values on locations Image as pixel values on locations

That is not the "real" signal, but we are familiar with it. That is not the "real" signal, but we are familiar with it.

The frequency domain **The frequency domain**

domain. represents a time/location relation. That is called time In the representation, we are familiar with, the values represents a time/location relation. That is called In the representation, we are familiar with, the values

the focus. In the Frequency domain the *changes* of a signal are in the focus. In the Frequency domain the of a signal are in

- How strong is the variation of the amplitude of the sudio signal? audio signal? How strong is the variation of the amplitude of the
- How strong varies the transition from one pixel to the How strong varies the transition from one pixel to the next ?
- Which frequencies are in the given signal? Which frequencies are in the given signal ?

Review: Fourier-Transformation **Review: Fourier-Transformation**

We remember our self. We remember our self:

Fourier-Transformation from f: Fourier-Transformation from f:

$$
\hat{f}(t) = \int f(x)e^{-2\pi ix}dx
$$

And the e-tunction coold be witten as: And the efunction could be written as:

$$
e^{ix} = \cos(x) + i\sin(x)
$$

to Sinus and Cosines are known: They reach from Sinus and Cosines are known: They reach from — ∞ ∞

Suited transformation **Suited transformation**

prepare it for a accumulation of all frequencies for to A transformation weights every single frequency to reconstruction of the original signal. reconstruction of the original signal. prepare it for a accumulation of all frequencies for to A transformation weights every single frequency to

sine oscillation (a) und (b) sine oscillation (a) und (b). The output signal (c) is represented as a sum of the two The output signal (c) is represented as a sum of the two

By the way: By the way:

the cosines is used, the FT stands in the real room. the cosines is used, the FT stands in the real room. function changes the FT to a complex transformation. If function changes the FT to a complex transformation. If JPEG cases the DOT and not the FI-because the sinus JPEG uses the DCT and not the FT because the sinus

 $e^{ix} = \cos(x) + i \sin(x)$ $e^{ix} = \cos(x) + i \sin(x)$

Problems with the Fourier-Transformation Problems with the Fourier-Transformation

oscillations from 0-5 Hz and 15-19 Hz (lower figure). disappears on the edges. It is put together with sine great many sine and cosine oscillations must be added The example shows a signal (upper figure), which The example shows a signal (upper figure), which If a signal with a high "locality" should be represented oscillations from 0-5 Hz and 15-19 Hz (lower figure). disappears on the edges. It is put together with sine great many sine and cosine oscillations must be added. If a signal with a high "locality" should be represented,

different frequencies to construct the signal only with a view addends from to construct the signal only with a view addends from features a high locality. With this functions it is possible features a high locality. With this functions it is possible Wanted: A frequency representation by functions, which different frequencies. Wanted: A frequency representation by functions, which

The solution: Wavelets ! The solution: Wavelets!

What is a Wavelet? **What is a Wavelet ?**

permissibility condition: A wavelet is a function ϕ , which satisfy the following

$$
0 < c_{\psi} := 2\pi \int_{R} \left| \frac{\hat{\psi}(\omega)}{|\omega|} d\omega < \infty \right|
$$

As follows: As follows:

$$
0 = \hat{W}(0) = \int w(x)e^{-2\pi i 0x} dx = \int w(x) dx
$$

A wavelet is a function, which exists only during a
limited interval ≈ 0 and which has the same "over the

ondelettewavelet = small wave= petite onde (frz.) (engl.)

curve" like "under the curve".

Wellchen= kleine Welle(dt.)

Example-Wavelets **Example-Wavelets**

Haar-Wavelet

Haar-Wavelet

Mexican Hat

Mexican
Hat

Practical application Practical application

Limitations: Limitations:

Instead of the general theory, we consider only: Instead of the general theory, we consider only:

- discrete Wavelet Transformations (DWT) discrete Wavelet Transformations (DWT) • dyadic DWT, that means "Factor 2" dyadic DWT, that means "Factor 2"
- orthogonal Wavelets orthogonal Wavelets

On" From now on all things are very easy and "Hands ... From now on all things are very easy and "Hands

orthogonal Wavelets and Filters, which are known in long time before. the signal processing and the engineering science a Stéphane Mallat discovered a correlation between the signal processing and the engineering science a orthogonal Wavelets Stéphane Mallatlong time before. discovered a correlation between and Filters, which are known in

(-) Scaling Function(-Scaling Function(-) That's the reason for the terms "high-pass filter" (~Wavelet) and "low-pass filter" (~Scaling Function). 's the reason for the terms "high-pass filter"

Example: Haar-Transformation (I) **Example: Haar-Transformation (I)**

will give the relation to the learned theory... will give the relation to the learned theory Wavelet without any care about the theory. After all, we We execute a Wavelet-Transformation with the Haar-Wavelet without any care about the theory. After all, we We execute a Wavelet-Transformation with the Haar- …

(e.g. Audio) in Wavelet-coefficients. Objective: Decomposition of a one dimensional signal (e.g. Audio) in Wavelet-coefficients. Objective: Decomposition of a one dimensional signal

Example: Haar-Transformation (II) **Example: Haar-Transformation (II)**

How can we represent the signal in another way without any loss of information? loss of information ? How can we represent the signal in another way without any

senjev of A rougher representation uses (e.g.) the mean value between to values. A rougher representation uses (e.g.) the mean value between

Example: Haar-Transformation (III) **Example: Haar-Transformation (III)**

signal we must know how far the two values are away approximation we loose Information ! To reconstruct the from the mean value. from the mean value. With the representation of the signal by the signal we must know how far the two values are away approximation we With the representation of the signal by the loose Information ! To reconstruct the

Example: Haar-Transformation (IV) **Example: Haar-Transformation (IV)**

need for a complete representation is unchanged. (That
is the meaning of the mathematical term "base transformation"). transformation"). is the meaning of the mathematical term need for a complete representation is unchanged. (That representation. Notice: The number of coefficients we representation. Notice: The number of coefficients we We have decomposed the original signal in another We have decomposed the original signal in another

and the details synthesis filters used. and the details To reconstruct the original signal with the approximation To reconstruct the original signal with the approximation synthesis filters

Synthesis filter for the 2. Value Synthesis filter for the 2. Value

Synthesis filter for the 1. Value

Synthesis filter for the 1. Value

With that: With that:

 $1.5^{*1} + (-0.5)^{*1}$ = 1 (Synthesis of the 1. value) $(1.5*1+(0.5)*(1) = 2$ (Synthesis of the 2. value) 1.5^{*1} +(-0.5)*(-1) = 2 (S)*(-1) = 2 (S)*(-1) + 2.2 *1+(-0.5)*1 = 1 (Synthesis of the 1. value)

etc. $2.5*1+(-0.5)*1$ $2.5*1+(-0.5)*(1) = 3$ (Synthesis of the 2. value) 2.5^{+1} (-0.5)*(-1) = 3 (S) $\frac{1}{2}$ (1) = 4.4 2.5*1+(-0.5)*1 = 2 (Synthesis of the 1. value) $= 2$ (Synthesis of the 1. value)

Example: Haar-Transformation (V) **Example: Haar-Transformation (V)**

for the synthesis of the original signal: for the synthesis of the original signal: All together we need 4 Filter for the decomposition and All together we need 4 Filter for the decomposition and

- Approximation filter tor the mean value Approximation filter for the mean value
- Detail filter for the differences Detail filter for the differences
- Synthesis tilter tor the 1. Value Synthesis filter for the 1. Value
- Synthesis filter for the 2. Value Synthesis filter for the 2. Value

details can now be continued with the input signal The decomposition of the signal in approximations and details can now be continued with the input signal. The decomposition of the signal in approximations and

Declarations: Declarations:

scale analysis. Treatment of the signal in rougher resolutions \equiv : Multi Treatment of the signal in rougher resolutions =: Multi scale analysis.

Example: Haar-Transformation (VI) **Example: Haar-Transformation (VI)**

filtered, with a "rougher" version of the input signal): Recursion with the calculated approximation (low-pass filtered, with a Recursion with the calculated approximation (low-pass "rougher" version of the input signal):

and work further with the approximations. Store the details (they will be needed for the synthesis), and work further with the approximations. Store the details (they will be needed for the synthesis),

1223234112211

 $\overline{5}$ \overline{a}

 \overline{z}

 \overline{c} $\overline{\overline{\omega}}$ \overline{a} ω $\overline{4}$

Signal

High and Low-pass filter

not in our focus. very sharp, that means, that mostly exist a frequency band which is neither filtered completely nor be very sharp, that means, that mostly exist a frequency trom the "pass Band" to the "Stop Band" is in real not from the higher frequencies (multiplication with 0). The transfer pass lower frequencies (multiplication with 1) and block The figure shows a low-pass filter. A low-pass filter let not in our focus.unchanged. band which is neither filtered completely nor be higher frequencies (multiplication with 0). The transfer pass lower frequencies (multiplication with 1) and block The figure shows a low-pass filter. A low-pass filter let "Pass Band" to the "Stop Band" is in real not $\overline{}$ the so called "Transition Band" $\overline{}$ but it is

The high pass filter works vice versa. The high pass filter works vice versa.

Multiresolution Analysis

viewed in rougher scales (e.g. Haar-Transformation), we call it Multiresolution Analysis. If a signal (a function, a "domain") will be successively we call it viewed in rougher scales (e.g. Haar-Transformation), If a signal (a function, a "domain") will be successively Multiresolution

We look back We look back

information about four signal values etc two signal values. In step 2 the coefficient includes coefficient of the low-pass includes information about first pass thru the Wavelet-Transformation the A coefficient of the signal represents a value. After the two signal values. In step 2 the coefficient includes coefficient of the low-pass includes information about first pass thru the Wavelet-Transformation the A coefficient of the signal represents a value. After the information about four signal values etc.

same but in different resolutions. stretched with every step. We are doing always the The "scope of engagement" of a coefficient will be same but in different resolutions. stretched with every step. We are doing always the "scope of engagement" of a coefficient will be

Common Wavelet-Transformation Common Wavelet-Transformation

Haar-Transformation and the synthesis We have learned something about the four filters of the Haar-Transformation and the synthesis. We have learned something about the four filters of the

complete transformation we need in any case a low-pass will be moved about 2 elements of the signal. will be moved about means a multiplication and a addition). After that, the filter be layed over the signal and convoluted with them (that filter, a high-pass filter an two synthesis filter. The filter will Common Wavelet-Filters are more complex. For a means a multiplication and a addition). After that, the filter be layed over the signal and convoluted with them (that filter, a high-pass filter an two synthesis filter. The filter will complete transformation we need Common Wavelet-Filters are more complex. For a 2 elements of the signal. *in any case* a low-pass

 $^{\circ}$ Ξ c2c3

poundary value problem! boundary value problem Important notice: With all filters with a length > 2 exists a Important notice: With all filters with a length > 2 exists a

The usage of Waveletts: The usage of Waveletts: Audio analysis **Audio analysis**

decomposes a signal in half of the resolution. The introduced Discrete Wavelet Transformation decomposes a signal in half of the resolution. The introduced Discrete Wavelet Transformation

between 20 Hz up to 20KHz. The human perception range of audio signals is The human perception range of audio signals is between 20 Hz up to 20KHz.

between 5000Hz to 10000Hz. percepted in the same strengthness as the range way. The frequency range from 100Hz to 200Hz will be The acoustic range will be percepted in a logarithmic way. The frequency range from 100Hz to 200Hz will be The acoustic range will be percepted in a logarithmic between 5000Hz to 10000Hz. percepted in the same strengthness as the range

Exact this differences are rebuild by the Wavelet Transformation. Transformation. Exact this differences are rebuild by the Wavelet

The usage of Wavelets: **The usage of Wavelets:** Image compression **Image compression**

human being percepts it. It is useful, to present a signal in such a way in which a human being percepts it. It is useful, to present a signal in such a way in which a

possible to present more details presentation. If the memory/bandwidth is sufficient it is possible to start to view a image with the roughest The segmentation possible to present more details. presentation. If the memory/bandwidth is sufficient it is possible to start to view a image with the roughest The segmentation "from rough to fine" makes it "from rough to fine" makes it

important information. image lossless it is also possible to present the most Is the memory/bandwidth is insufficient to present the important information. image lossless it is also possible to present the most Is the memory/bandwidth is insufficient to present the

Fiters in multi-dimensions **Filters in multi-dimensions**

"separable Makelex" xe can start with one-If we look at a small scope of wavelets, the so called Wavelet-Transformation which is used with for audio multi-dimension filters, instead of the one-dimensiona dim) it is necessary to think about the algorithm of Wavelet-Transformation with images (2-dim), videos (3-With the conception of applications which use the Wavelet-Transformation which is used with for audio. dim) it is necessary to think about the algorithm of Wavelet-Transformation with images (2-dim), videos (3- With the conception of applications which use the If we look at a small scope of wavelets, the so called multi-dimension filters, instead of the one-dimensional separable Wavelets" we can start with one-

Image compression with Wavelets (I) Image compression with Wavelets (I)

Original image "Lenna" Original image "Lenna"

we start first with the lines. to left, the details to right. to left, the details to right. The approximation is written The approximation is written We start first with the lines. The 2-d problem is solved, if The 2-d problem is solved, if

a complete recursion step. column wise tiltering process the initial image for the a complete recursion step. This results 4 versions inside This results 4 versions inside column wise filtering process. the initial image for the The line wise filtered image is The line wise filtered image is

Image compression with Wavelets (II) Image compression with Wavelets (II)

will be treated further more... resulted details will be stored, the approximations filtered by a low-pass and a high-pass filter. The treated any more), the approximation will now During the storage of the details (they are not will be treated further more filtered by a low-pass and a high-pass filter. The treated any more), the approximation will now resulted details will be stored, the approximations During the storage of the details (they are not …

artifacts by JPEG. disturbing for the human perception like the block which results by a higher compression rate (and artifacts by JPEG. disturbing for the human perception like the block the implicit information losses) are not so the implicit information losses) are not so which results by a higher compression rate (and Wavelet Transformation. The viewable artifacts, Wavelet Transformation. The viewable artifacts, more on the DCT (like JPEG), it bases on the more on the DCT (like the JPEG), it bases on the The new standard JPEG-2000 bases not any The new standard JPEG-2000 pases not any

Conclusion: Conclusion:

rates. A serial of still images with different compression A serial of still images with different compression

2.2.7 Image Compression with **Fractals 2.2.7 Image Compression with Fractals**

mathematical way. similarity. Self similarity is describable in a mathematical way. Theory of the Fractals = Theory of the Theory of the Fractals = Theory of the self-. Self similarity is describable in a

Examples from nature: Coastline of an island **Examples from nature:** Coastline of an island

Idea for the image compression **Idea for the image compression**

- another part. with simple mathematical functions (translation, of the image. More exact: It is possible to calculate Very often a part of a image is similar to another part another part. rotation and scaling) from one part of the image with simple mathematical functions (translation, of the image. More exact: It is possible to calculate Very often a part of a image is similar to another part rotation and scaling) from one part of the image
- Encoding: Full-Encoding of the first part of the image operands for the similar parts. Output of the transformation **operands.** for the similar parts. Output of the Encoding: Full-Encoding of the first part of the image **transformation**

Image compression with Fractals **Image compression with Fractals**

Example

Literature: Literature:

len, Vieweg-Verlag, 1996 M.F. Barnsley, L.P. Hurd: Bildkompression mit Fraktalen, Vieweg-Verlag, 1996 M.F. Barnsley, L.P. Hurd: Bildkompression mit Frakta-

