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2.1 Fundamentals of Data 
Compression

Motivation: huge volume of the data

Text
1 page with 80 charachters/line and 64 lines/page and 
1 byte/char results in 80 * 64 * 1 * 8 = 40 kbit/page

Still image
24 bits/pixel, 512 x 512 pixel/image results in 512 x 512 x 24 = 
8 Mbit/image

Audio
CD quality, sampling rate 44,1 KHz, 16 bits per sample results 
in 44,1 x 16 = 706 kbit/s stereo: 1,412 Mbit/s

Video
Full-size frame 1024 x 768 pixel/frame, 24 bits/pixel, 
30 frames/s results in 1024 x 768 x 24 x 30 = 566 Mbit/s.
More realistic: 360 x 240 pixel/frame, 360 x 240 x 24 x 30 = 60 
Mbit/s

=> Storage and transmission of multimedia streams require 
compression!!
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Principles of Data Compression

1. Lossless Compression)

• The original can be reconstructed perfectly

• Compression rates of 2:1 up to 50:1 are typical

• Example: Huffman-Coding

2. Lossy Compression

• There is a difference between the original object and 
the reconstructed object

• Physiological and psychological properties of the ear 
and eye are taken into account

• Higher compression rates are possible than with 
lossless compression (e.g. up to 100:1)
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Simple Lossless Algorithms:
Pattern Substitution

Example 1:          ABC -> 1; EE -> 2

Example 2:

Note that both algorithms lead to the same 
compression rate in this example.
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Run Length Coding

Principle
Replace all repetitions of the same symbol in the text 
(„runs“) by a repetition counter and the symbol.

Example
Text:
AAAABBBAABBBBBCCCCCCCCDABCBAABBBBCCD

Encoding:  4A3B2A5B8C1D1A1B1C1B2A4B2C1D

As we can see, we can only expect a good compression 
rate when long runs occur frequently. 

Examples in text documents are long runs of blanks, 
leading zeroes or strings of „white“ in gray-scale images.
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Run Length Coding for Binary Files

When dealing with binary files we are sure that a run of “1“s is
always followed by a run of “0“s and vice versa. It is thus 
sufficient to store the repetition counters only!

Example

000000000000000000000000000011111111111111000000000  28 14 9
000000000000000000000000001111111111111111110000000  26 18 7
000000000000000000000001111111111111111111111110000  23 24 4
000000000000000000000011111111111111111111111111000  22 26 3
000000000000000000001111111111111111111111111111110  20 30 1

000000000000000000011111110000000000000000001111111  19  7 18 7
000000000000000000011111000000000000000000000011111  19  5 22 5
000000000000000000011100000000000000000000000000111  19  3 26 3
000000000000000000011100000000000000000000000000111  19  3 26 3
000000000000000000011100000000000000000000000000111  19  3 26 3
000000000000000000011100000000000000000000000000111  19  3 26 3
000000000000000000001111000000000000000000000001110  20  4 23 3 1
000000000000000000000011100000000000000000000111000  22  3 20 3 3

011111111111111111111111111111111111111111111111111   1 50
011111111111111111111111111111111111111111111111111   1 50
011111111111111111111111111111111111111111111111111   1 50
011111111111111111111111111111111111111111111111111   1 50
011111111111111111111111111111111111111111111111111   1 50
011000000000000000000000000000000000000000000000011   1  2 46 2
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Variable Length Coding

Classical character codes use the same number of bits 
for each character. When the frequency of occurrence 
is different for different characters, we can use fewer 
bits for frequent characters and more bits for rare 
characters.

Example
Code 1: A B C D E ...

1 2 3 4 5 ...(binary)

Encoding of ABRACADABRA with constant bit length 
(=5 Bits):
0000100010100100000100011000010010000001
000101001000001

Code 2: A B R C D

0 1 01 10 11

Encoding: 0 1  01  0  10  0  11  0  1  
01 0
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Delimiters

Code 2 can only be decoded unambiguously when 
delimiters are stored with the codewords. This can 
increase the size of the encoded string considerably.

Idea
No code word should be the prefix of another 
codeword! We will then no longer need delimiters.

Code 3:

Encoded string: 1100011110101110110001111

A 1 1
B 0 0
R 0 1 1
C 0 1 0
D 1 0
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Representation as a Trie

An obvious method to represent such a code as a 
TRIE. In fact, any TRIE with M leaf nodes can be used 
to represent a code for a string containing M different 
characters. 

As two examples the figure on the next page shows two 
codes which can be used for ABRACADABRA. The 
code for each character is represented by the path from 
the root of the TRIE to that character where “0“ goes to 
the left, “1“ goes to the right, as is the convention for
TRIEs. 

The TRIE on the left corresponds to the encoding of 
ABRACADABRA on the previous page, the TRIE on 
the right generates the following encoding:

01101001111011100110100

which is two bits shorter. 
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Two Tries for our Example

The TRIE representation guarantees that no codeword 
is the prefix of another codeword! Thus the encoded bit 
string can be uniquely decoded.
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Huffman Code

Now the question arises how we can find the best
variable-length code for given character frequencies 
(or probabilities). The algorithm that solves this 
problem was found by David Huffman in 1952.

Algorithm Generate-Huffman-Code
1. Determine the frequencies of the characters and 

mark the leaf nodes of a binary tree (to be built) with 
them.

2. Out of the tree nodes not yet marked as DONE, 
take the two with the smallest frequencies and 
compute their sum.

3. Create a parent node for them and mark it with the 
sum. Mark the branch to the left son with 0, the one 
to the right son with 1.

4. Mark the two son nodes as DONE. When there is 
only one node not yet marked as DONE, stop (the 
tree is complete). Otherwise, continue with step 2.
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Huffman Code, Example

Probabilities of the characters:

p(A) = 0.3; p(B) = 0.3; p(C) = 0.1; p(D) = 0.15; 
p(E) = 0.15
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Huffman Code, why is it optimal?

Characters with higher probabilities are closer to the 
root of the tree and thus have shorter codeword 
lengths; thus it is a good code. It is even the best 
possible code!

Reason:
The length of an encoded string equals the weighted 
outer path length of the Huffman tree.

To compute the “weighted outer path length“ we first 
compute the product of the weight (frequency counter) 
of a leaf node with its distance from the root. We then 
compute the sum of all these values over the leaf 
nodes. This is obviously the same as summing up the 
products of each character‘s codeword length with its
frequency of occurrence.

No other tree with the same frequencies attached to the 
leaf nodes has a smaller weighted path length than the 
Huffman tree.
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Sketch of the Proof

With the same building process another tree could be 
constructed but without always combining the two 
nodes with the minimal frequencies. We can show by 
induction that no other such strategy will lead to a 
smaller weighted outer path length than the one that 
combines the minimal values in each step.
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Decoding Huffman Codes (1)

An obvious possibility is to use the TRIE:

1. Read the input stream sequentially and traverse the 
TRIE until a leaf node is reached.

2. When a leaf node is reached, output the character 
attached to it.

3. When reading the next bit, start again at the root of 
the TRIE.

Observation:
The input bit rate is constant, but the output character 
rate is variable.
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Decoding Huffman Codes (2)

As an alternative we can use a decoding table.

Creation of the decoding table:

• If the longest codeword has L bits the table has 2L

entries.

• Let ci be the codeword for character si. Let ci have
li bits. We then create 2L-li entries in the table. In 
each of these entries the first li bits are equal to ci, 
and the remaining bits take on all possible L-li
binary combinations.

• At all these addresses of the table we enter si as 
the character recognized, and we will remember li
as the length of the codeword.
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Decoding with the Table (3)

Algorithm Table-Based Huffman Decoder

1. Read L bits from the input stream into a buffer.

2. Use the buffer as the address into the table and 
output the recognized character si.

3. Remove the first li bits from the buffer and pull in the 
next li bits from the input bit stream.

4. Continue with step 2.

Observation

• Table-based Huffman decoding is fast.

• The output character rate is constant, but the input 
bit rate is variable.
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Huffman Code, Comments

• A very good code for many practical purposes.

• Can only be used when the frequencies (or 
probabilities) of the characters are known in advance.

• Variant: Determine the character frequencies 
separately for each new document and store/transmit 
the code tree/table with the data. 

• Note that a loss in “optimality“ comes from the fact 
that each character must be encoded with a fixed
number of bits, and thus the codeword lengths do not 
match the frequencies exactly (consider a code for 
three characters A, B and C, each occurring with a 
frequency of 33 %).
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Lempel-Ziv Code

Lempel-Ziv codes are an example of the large group of 
dictionary-based codes.

Dictionary: A table of character strings which is used 
in the encoding process.

Example
The word “lecture“ is found on page x4, line y4 of the 
dictionary. It can thus be encoded as (x4,y4).

A sentence such as  „this is a lecture“ can then be 
encoded as a sequence of tuples (x1,y1) (x2,y2) (x3,y3) 
(x4,y4).
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Dictionary-Based Coding Techniques

Static techniques:
The exists before a string is encoded and is not 
changed, neither in the encoding nor in the decoding 
process.

Dynamic techniques:
The dictionary is created “on the fly“ during the 
encoding process, at the sending (and sometimes also 
at the receiving) side.

Lempel and Ziv have proposed an especially brilliant 
dynamic, dictionary-based technique (1977). Variants 
of this techniques are used very widely today for 
lossless compression. An example is LZW 
(Lempel/Ziv/Welch) which is invoked with the Unix 
compress command.  

The well-known TIFF format (Tag Image File Format) is 
also based on Lempel-Ziv coding.
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Ziv-Lempel Coding, the Principle

Idea (pretty bright!)
The current piece of the message can be encoded as a 
reference to an earlier (identical) piece of the message. This 
reference will usually be shorter than the piece itself. 

As the message is processed, the dictionary is created 
dynamically.

LZW Algorithm
InitializeStringTable();

WriteCode(ClearCode);

ω= the empty string;
for each character in string {

K = GetNextCharacter();

if ω + K is in the string table {

ω=ω+K /* String concatenation*/
} else {

WriteCode(CodeFromString(ω));
AddTableEntry(ω+K );
ω=K 

} 

}

WriteCode(CodeFromString(ω));



A Graduate Course on 
Multimedia Technology

2. Compression, 
Part a

2a-22
© Wolfgang Effelsberg, 

Ralf Steinmetz

LZW, Example 1, Encoding

Alphabet: X = {A, B, C}

Message: ABABCBABAB

Encoded message:     1 2 4 3 5 8

C3

B2

A1

0

EntryIndex

DICTIONARY
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LZW Algorithm: Decoding (1)

Note that the decoding algorithm also creates the 
dictionary dynamically, the dictionary is not transmitted!

While((Code=GetNextCode() != EofCode){ 
if (Code == ClearCode)

{
InitializeTable();

Code = GetNextCode();
if (Code==EofCode)

break;
WriteString(StringFromCode(Code));

OldCode = Code;

} /* end of ClearCode case */
else 

{ 
if (IsInTable(Code)) 

{
WriteString( StringFromCode(Code) );

AddStringToTable(StringFromCode(OldCode)+

FirstChar(StringFromCode(Code)));
OldCode = Code;

} 
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LZW Algorithm: Decoding (2)

else 

{/* codes in not in table */

OutString = StringFromCode(OldCode) +

FirstChar(StringFromCode(OldCode)));

WriteString(OutString);

AddStringToTable(OutString);

OldCode = Code;

}

}

}
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LZW, Example 2, Encoding (1)

Our alphabet is {A,B,C,D}. We encode the string 
ABACABA. In the first step we initialize the code table:

1 = A
2 = B

3 = C
4 = D

We read A from the input. We find A in the table and 
keep A in the buffer. We read B from the input into the 
buffer and now consider AB. AB is not in the table, we 
add AB with index 5, write 1 for A into the output and 
remove A from the buffer. The buffer only contains B 
now. Next, we read A, consider BA, add BA as entry 6 
into the table and write 2 for B into the output, etc.
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LZW, Example 2, Encoding (2)

At the end the code table is

1 = A
2 = B
3 = C

4 = D
5 = AB
6 = BA

7 = AC
8 = CA
9 = ABA.

The output data stream is   1  2  1  3  5  1.

Note that only the initial table is transmitted! The 
decoder can construct the rest of the table dynamically.

In practical applications the size of the code table is 
limited. The actual size is a trade-off between coding 
speed and compression rate.
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LZW, Properties

• The dictionary is created dynamically during the 
encoding and decoding process. It is neither stored 
nor transmitted.

• The dictionary adapts dynamically to the properties 
of the character string.

• With length N of the original message, the encoding 
process is of complexity O(N). With length M of the 
encoded message, the decoding process is of 
complexity O(M). These are thus very efficient 
processes. Since several characters of the input 
alphabet are combined into one character of the 
code, M <= N.
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Typical Compression Rates

Typical examples of file sizes in % of the original size

30 %50 %Text

55 %80 %
machine 
code

45 %65 %
C source 
code

Encoded 
with 

Lempel-Ziv

Encoded 
with 

Huffman

Type of file
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Arithmetic Coding

From an information theory point of view, the Huffman 
code is not quite optimal since a codeword must always 
consist of an integer number of bits even if this does 
not correspond exactly to the frequency of occurrence 
of the character. Arithmetic coding solves this 
problem.

Idea
An entire message is represented by a floating point 
number out of the interval [0,1). For this purpose the 
interval [0,1) is repeatedly subdivided according to the 
frequency of the next symbol. Each new sub-interval 
represents one symbol. When the process is completed 
the shortest floating point number contained in the 
target interval is chosen as the representative for the 
message.
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Arithmetic Coding, the Algorithm

Algorithm Arithmetic Encoding

1. Begin in front of the first character of the input 
stream, with the current interval set to [0,1).

2. Read the next character from the input stream. 
Subdivide the current interval according to the 
frequencies of all characters of the alphabet. Select 
the subinterval corresponding to the current 
character as the next current interval.

3. If you reach the end of the input stream or the end 
symbol, go to step 4. Otherwise go to step 2.

4. From the current (final) interval, select the floating 
point number that you can represent in the 
computer with the smallest number of bits. This 
number is the encoding of the string.
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Arithmetic Coding, the Decoding Algorithm

Algorithm Arithmetic Decoding

1. Subdivide the interval [0,1) according to the 
character frequencies, as described in the encoding 
algorithm, up to the maximum size of a message.

2. The encoded floating point number uniquely 
identifies one particular subinterval.

3. This subinterval uniquely identifies one particular 
message. Output the message.
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Arithmetic Coding, Example

Alphabet = {A,B,C}
Frequencies (probabilities): 

p(A) = 0.2;
p(B) = 0.3;
p(C) = 0.5

Mesages:  ACB AAB (maximum size of a messe is 3).

Encoding of the first block:

Final interval: [0.12; 0.15)   choose e.g. 0.12

0 0,2 0,5 1

A B C

0 0,04 0,1 0,2

A B C

0,1 0,12 0,15 0,2

A B C
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Arithmetic Coding, Properties

• The encoding depends on the probabilities 
(frequencies) of the characters.The higher the 
frequency, the larger the subinterval; the smaller the 
number of bits needed to represent it.

• The code length reaches the theoretical optimum: 
The number of bits used for each character need not
be an integer. It can approach the real probability 
better than with the Huffman code.

• There are several possibilities to terminate the 
encoding process:

• The length of each block is known to sender and 
receiver.

• There is a fixed number of bits of the mantissa 
(known to sender and receiver).
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Arithmetic Coding, Problems

• The precision of floating point numbers is machine-
dependent. Overflow and underflow can happen.

• Decoding can only begin after the full number has 
been received. The number can have many bits in the 
mantissa.

• One bit error destroys the entire message.


