
A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-1
© Wolfgang Effelsberg,

Ralf Steinmetz

2. Compression Algorithms for
Multimedia Data Streams

2.1 Fundamentals of Data Compression

2.2 Compression of Still Images

2.3 Video Compression

2.4 Audio Compression

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-2
© Wolfgang Effelsberg,

Ralf Steinmetz

2.1 Fundamentals of Data
Compression

Motivation: huge volume of the data

Text
1 page with 80 charachters/line and 64 lines/page and
1 byte/char results in 80 * 64 * 1 * 8 = 40 kbit/page

Still image
24 bits/pixel, 512 x 512 pixel/image results in 512 x 512 x 24 =
8 Mbit/image

Audio
CD quality, sampling rate 44,1 KHz, 16 bits per sample results
in 44,1 x 16 = 706 kbit/s stereo: 1,412 Mbit/s

Video
Full-size frame 1024 x 768 pixel/frame, 24 bits/pixel,
30 frames/s results in 1024 x 768 x 24 x 30 = 566 Mbit/s.
More realistic: 360 x 240 pixel/frame, 360 x 240 x 24 x 30 = 60
Mbit/s

=> Storage and transmission of multimedia streams require
compression!!

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-3
© Wolfgang Effelsberg,

Ralf Steinmetz

Principles of Data Compression

1. Lossless Compression)

• The original can be reconstructed perfectly

• Compression rates of 2:1 up to 50:1 are typical

• Example: Huffman-Coding

2. Lossy Compression

• There is a difference between the original object and
the reconstructed object

• Physiological and psychological properties of the ear
and eye are taken into account

• Higher compression rates are possible than with
lossless compression (e.g. up to 100:1)

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-4
© Wolfgang Effelsberg,

Ralf Steinmetz

Simple Lossless Algorithms:
Pattern Substitution

Example 1: ABC -> 1; EE -> 2

Example 2:

Note that both algorithms lead to the same
compression rate in this example.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-5
© Wolfgang Effelsberg,

Ralf Steinmetz

Run Length Coding

Principle
Replace all repetitions of the same symbol in the text
(„runs“) by a repetition counter and the symbol.

Example
Text:
AAAABBBAABBBBBCCCCCCCCDABCBAABBBBCCD

Encoding: 4A3B2A5B8C1D1A1B1C1B2A4B2C1D

As we can see, we can only expect a good compression
rate when long runs occur frequently.

Examples in text documents are long runs of blanks,
leading zeroes or strings of „white“ in gray-scale images.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-6
© Wolfgang Effelsberg,

Ralf Steinmetz

Run Length Coding for Binary Files

When dealing with binary files we are sure that a run of “1“s is
always followed by a run of “0“s and vice versa. It is thus
sufficient to store the repetition counters only!

Example

000000000000000000000000000011111111111111000000000 28 14 9
000000000000000000000000001111111111111111110000000 26 18 7
000000000000000000000001111111111111111111111110000 23 24 4
000000000000000000000011111111111111111111111111000 22 26 3
000000000000000000001111111111111111111111111111110 20 30 1

000000000000000000011111110000000000000000001111111 19 7 18 7
000000000000000000011111000000000000000000000011111 19 5 22 5
000000000000000000011100000000000000000000000000111 19 3 26 3
000000000000000000011100000000000000000000000000111 19 3 26 3
000000000000000000011100000000000000000000000000111 19 3 26 3
000000000000000000011100000000000000000000000000111 19 3 26 3
000000000000000000001111000000000000000000000001110 20 4 23 3 1
000000000000000000000011100000000000000000000111000 22 3 20 3 3

011 1 50
011 1 50
011 1 50
011 1 50
011 1 50
0110011 1 2 46 2

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-7
© Wolfgang Effelsberg,

Ralf Steinmetz

Variable Length Coding

Classical character codes use the same number of bits
for each character. When the frequency of occurrence
is different for different characters, we can use fewer
bits for frequent characters and more bits for rare
characters.

Example
Code 1: A B C D E ...

1 2 3 4 5 ...(binary)

Encoding of ABRACADABRA with constant bit length
(=5 Bits):
0000100010100100000100011000010010000001
000101001000001

Code 2: A B R C D

0 1 01 10 11

Encoding: 0 1 01 0 10 0 11 0 1
01 0

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-8
© Wolfgang Effelsberg,

Ralf Steinmetz

Delimiters

Code 2 can only be decoded unambiguously when
delimiters are stored with the codewords. This can
increase the size of the encoded string considerably.

Idea
No code word should be the prefix of another
codeword! We will then no longer need delimiters.

Code 3:

Encoded string: 1100011110101110110001111

A 1 1
B 0 0
R 0 1 1
C 0 1 0
D 1 0

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-9
© Wolfgang Effelsberg,

Ralf Steinmetz

Representation as a Trie

An obvious method to represent such a code as a
TRIE. In fact, any TRIE with M leaf nodes can be used
to represent a code for a string containing M different
characters.

As two examples the figure on the next page shows two
codes which can be used for ABRACADABRA. The
code for each character is represented by the path from
the root of the TRIE to that character where “0“ goes to
the left, “1“ goes to the right, as is the convention for
TRIEs.

The TRIE on the left corresponds to the encoding of
ABRACADABRA on the previous page, the TRIE on
the right generates the following encoding:

01101001111011100110100

which is two bits shorter.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-10
© Wolfgang Effelsberg,

Ralf Steinmetz

Two Tries for our Example

The TRIE representation guarantees that no codeword
is the prefix of another codeword! Thus the encoded bit
string can be uniquely decoded.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-11
© Wolfgang Effelsberg,

Ralf Steinmetz

Huffman Code

Now the question arises how we can find the best
variable-length code for given character frequencies
(or probabilities). The algorithm that solves this
problem was found by David Huffman in 1952.

Algorithm Generate-Huffman-Code
1. Determine the frequencies of the characters and

mark the leaf nodes of a binary tree (to be built) with
them.

2. Out of the tree nodes not yet marked as DONE,
take the two with the smallest frequencies and
compute their sum.

3. Create a parent node for them and mark it with the
sum. Mark the branch to the left son with 0, the one
to the right son with 1.

4. Mark the two son nodes as DONE. When there is
only one node not yet marked as DONE, stop (the
tree is complete). Otherwise, continue with step 2.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-12
© Wolfgang Effelsberg,

Ralf Steinmetz

Huffman Code, Example

Probabilities of the characters:

p(A) = 0.3; p(B) = 0.3; p(C) = 0.1; p(D) = 0.15;
p(E) = 0.15

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-13
© Wolfgang Effelsberg,

Ralf Steinmetz

Huffman Code, why is it optimal?

Characters with higher probabilities are closer to the
root of the tree and thus have shorter codeword
lengths; thus it is a good code. It is even the best
possible code!

Reason:
The length of an encoded string equals the weighted
outer path length of the Huffman tree.

To compute the “weighted outer path length“ we first
compute the product of the weight (frequency counter)
of a leaf node with its distance from the root. We then
compute the sum of all these values over the leaf
nodes. This is obviously the same as summing up the
products of each character‘s codeword length with its
frequency of occurrence.

No other tree with the same frequencies attached to the
leaf nodes has a smaller weighted path length than the
Huffman tree.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-14
© Wolfgang Effelsberg,

Ralf Steinmetz

Sketch of the Proof

With the same building process another tree could be
constructed but without always combining the two
nodes with the minimal frequencies. We can show by
induction that no other such strategy will lead to a
smaller weighted outer path length than the one that
combines the minimal values in each step.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-15
© Wolfgang Effelsberg,

Ralf Steinmetz

Decoding Huffman Codes (1)

An obvious possibility is to use the TRIE:

1. Read the input stream sequentially and traverse the
TRIE until a leaf node is reached.

2. When a leaf node is reached, output the character
attached to it.

3. When reading the next bit, start again at the root of
the TRIE.

Observation:
The input bit rate is constant, but the output character
rate is variable.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-16
© Wolfgang Effelsberg,

Ralf Steinmetz

Decoding Huffman Codes (2)

As an alternative we can use a decoding table.

Creation of the decoding table:

• If the longest codeword has L bits the table has 2L

entries.

• Let ci be the codeword for character si. Let ci have
li bits. We then create 2L-li entries in the table. In
each of these entries the first li bits are equal to ci,
and the remaining bits take on all possible L-li
binary combinations.

• At all these addresses of the table we enter si as
the character recognized, and we will remember li
as the length of the codeword.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-17
© Wolfgang Effelsberg,

Ralf Steinmetz

Decoding with the Table (3)

Algorithm Table-Based Huffman Decoder

1. Read L bits from the input stream into a buffer.

2. Use the buffer as the address into the table and
output the recognized character si.

3. Remove the first li bits from the buffer and pull in the
next li bits from the input bit stream.

4. Continue with step 2.

Observation

• Table-based Huffman decoding is fast.

• The output character rate is constant, but the input
bit rate is variable.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-18
© Wolfgang Effelsberg,

Ralf Steinmetz

Huffman Code, Comments

• A very good code for many practical purposes.

• Can only be used when the frequencies (or
probabilities) of the characters are known in advance.

• Variant: Determine the character frequencies
separately for each new document and store/transmit
the code tree/table with the data.

• Note that a loss in “optimality“ comes from the fact
that each character must be encoded with a fixed
number of bits, and thus the codeword lengths do not
match the frequencies exactly (consider a code for
three characters A, B and C, each occurring with a
frequency of 33 %).

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-19
© Wolfgang Effelsberg,

Ralf Steinmetz

Lempel-Ziv Code

Lempel-Ziv codes are an example of the large group of
dictionary-based codes.

Dictionary: A table of character strings which is used
in the encoding process.

Example
The word “lecture“ is found on page x4, line y4 of the
dictionary. It can thus be encoded as (x4,y4).

A sentence such as „this is a lecture“ can then be
encoded as a sequence of tuples (x1,y1) (x2,y2) (x3,y3)
(x4,y4).

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-20
© Wolfgang Effelsberg,

Ralf Steinmetz

Dictionary-Based Coding Techniques

Static techniques:
The exists before a string is encoded and is not
changed, neither in the encoding nor in the decoding
process.

Dynamic techniques:
The dictionary is created “on the fly“ during the
encoding process, at the sending (and sometimes also
at the receiving) side.

Lempel and Ziv have proposed an especially brilliant
dynamic, dictionary-based technique (1977). Variants
of this techniques are used very widely today for
lossless compression. An example is LZW
(Lempel/Ziv/Welch) which is invoked with the Unix
compress command.

The well-known TIFF format (Tag Image File Format) is
also based on Lempel-Ziv coding.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-21
© Wolfgang Effelsberg,

Ralf Steinmetz

Ziv-Lempel Coding, the Principle

Idea (pretty bright!)
The current piece of the message can be encoded as a
reference to an earlier (identical) piece of the message. This
reference will usually be shorter than the piece itself.

As the message is processed, the dictionary is created
dynamically.

LZW Algorithm
InitializeStringTable();

WriteCode(ClearCode);

ω= the empty string;
for each character in string {

K = GetNextCharacter();

if ω + K is in the string table {

ω=ω+K /* String concatenation*/
} else {

WriteCode(CodeFromString(ω));
AddTableEntry(ω+K);
ω=K

}

}

WriteCode(CodeFromString(ω));

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-22
© Wolfgang Effelsberg,

Ralf Steinmetz

LZW, Example 1, Encoding

Alphabet: X = {A, B, C}

Message: ABABCBABAB

Encoded message: 1 2 4 3 5 8

C3

B2

A1

0

EntryIndex

DICTIONARY

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-23
© Wolfgang Effelsberg,

Ralf Steinmetz

LZW Algorithm: Decoding (1)

Note that the decoding algorithm also creates the
dictionary dynamically, the dictionary is not transmitted!

While((Code=GetNextCode() != EofCode){
if (Code == ClearCode)

{
InitializeTable();

Code = GetNextCode();
if (Code==EofCode)

break;
WriteString(StringFromCode(Code));

OldCode = Code;

} /* end of ClearCode case */
else

{
if (IsInTable(Code))

{
WriteString(StringFromCode(Code));

AddStringToTable(StringFromCode(OldCode)+

FirstChar(StringFromCode(Code)));
OldCode = Code;

}

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-24
© Wolfgang Effelsberg,

Ralf Steinmetz

LZW Algorithm: Decoding (2)

else

{/* codes in not in table */

OutString = StringFromCode(OldCode) +

FirstChar(StringFromCode(OldCode)));

WriteString(OutString);

AddStringToTable(OutString);

OldCode = Code;

}

}

}

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-25
© Wolfgang Effelsberg,

Ralf Steinmetz

LZW, Example 2, Encoding (1)

Our alphabet is {A,B,C,D}. We encode the string
ABACABA. In the first step we initialize the code table:

1 = A
2 = B

3 = C
4 = D

We read A from the input. We find A in the table and
keep A in the buffer. We read B from the input into the
buffer and now consider AB. AB is not in the table, we
add AB with index 5, write 1 for A into the output and
remove A from the buffer. The buffer only contains B
now. Next, we read A, consider BA, add BA as entry 6
into the table and write 2 for B into the output, etc.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-26
© Wolfgang Effelsberg,

Ralf Steinmetz

LZW, Example 2, Encoding (2)

At the end the code table is

1 = A
2 = B
3 = C

4 = D
5 = AB
6 = BA

7 = AC
8 = CA
9 = ABA.

The output data stream is 1 2 1 3 5 1.

Note that only the initial table is transmitted! The
decoder can construct the rest of the table dynamically.

In practical applications the size of the code table is
limited. The actual size is a trade-off between coding
speed and compression rate.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-27
© Wolfgang Effelsberg,

Ralf Steinmetz

LZW, Properties

• The dictionary is created dynamically during the
encoding and decoding process. It is neither stored
nor transmitted.

• The dictionary adapts dynamically to the properties
of the character string.

• With length N of the original message, the encoding
process is of complexity O(N). With length M of the
encoded message, the decoding process is of
complexity O(M). These are thus very efficient
processes. Since several characters of the input
alphabet are combined into one character of the
code, M <= N.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-28
© Wolfgang Effelsberg,

Ralf Steinmetz

Typical Compression Rates

Typical examples of file sizes in % of the original size

30 %50 %Text

55 %80 %
machine
code

45 %65 %
C source
code

Encoded
with

Lempel-Ziv

Encoded
with

Huffman

Type of file

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-29
© Wolfgang Effelsberg,

Ralf Steinmetz

Arithmetic Coding

From an information theory point of view, the Huffman
code is not quite optimal since a codeword must always
consist of an integer number of bits even if this does
not correspond exactly to the frequency of occurrence
of the character. Arithmetic coding solves this
problem.

Idea
An entire message is represented by a floating point
number out of the interval [0,1). For this purpose the
interval [0,1) is repeatedly subdivided according to the
frequency of the next symbol. Each new sub-interval
represents one symbol. When the process is completed
the shortest floating point number contained in the
target interval is chosen as the representative for the
message.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-30
© Wolfgang Effelsberg,

Ralf Steinmetz

Arithmetic Coding, the Algorithm

Algorithm Arithmetic Encoding

1. Begin in front of the first character of the input
stream, with the current interval set to [0,1).

2. Read the next character from the input stream.
Subdivide the current interval according to the
frequencies of all characters of the alphabet. Select
the subinterval corresponding to the current
character as the next current interval.

3. If you reach the end of the input stream or the end
symbol, go to step 4. Otherwise go to step 2.

4. From the current (final) interval, select the floating
point number that you can represent in the
computer with the smallest number of bits. This
number is the encoding of the string.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-31
© Wolfgang Effelsberg,

Ralf Steinmetz

Arithmetic Coding, the Decoding Algorithm

Algorithm Arithmetic Decoding

1. Subdivide the interval [0,1) according to the
character frequencies, as described in the encoding
algorithm, up to the maximum size of a message.

2. The encoded floating point number uniquely
identifies one particular subinterval.

3. This subinterval uniquely identifies one particular
message. Output the message.

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-32
© Wolfgang Effelsberg,

Ralf Steinmetz

Arithmetic Coding, Example

Alphabet = {A,B,C}
Frequencies (probabilities):

p(A) = 0.2;
p(B) = 0.3;
p(C) = 0.5

Mesages: ACB AAB (maximum size of a messe is 3).

Encoding of the first block:

Final interval: [0.12; 0.15) choose e.g. 0.12

0 0,2 0,5 1

A B C

0 0,04 0,1 0,2

A B C

0,1 0,12 0,15 0,2

A B C

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-33
© Wolfgang Effelsberg,

Ralf Steinmetz

Arithmetic Coding, Properties

• The encoding depends on the probabilities
(frequencies) of the characters.The higher the
frequency, the larger the subinterval; the smaller the
number of bits needed to represent it.

• The code length reaches the theoretical optimum:
The number of bits used for each character need not
be an integer. It can approach the real probability
better than with the Huffman code.

• There are several possibilities to terminate the
encoding process:

• The length of each block is known to sender and
receiver.

• There is a fixed number of bits of the mantissa
(known to sender and receiver).

A Graduate Course on
Multimedia Technology

2. Compression,
Part a

2a-34
© Wolfgang Effelsberg,

Ralf Steinmetz

Arithmetic Coding, Problems

• The precision of floating point numbers is machine-
dependent. Overflow and underflow can happen.

• Decoding can only begin after the full number has
been received. The number can have many bits in the
mantissa.

• One bit error destroys the entire message.

