
The Network Simulator ns-2

Joerg Widmer

University of Mannheim

widmer@informatik.uni-mannheim.de

 Outline

 Introduction
 Simulator architecture
 Example simulation

 Visualization and analysis

 Features
 Resources

 Introduction

 Why network simulations?

 Controlled environment necessary	

 But: capturing all the details of real-world scenarios is

impossible

 Real-world experiments and simulations

 Standard platform for protocol development

 Users from ca. 600 institutes, 50 countries

 ns Architecture

 Discrete event simulator
 Object-oriented

 Modular
 Extensible framework

 Developed by UCB, LBNL, ISI/USC, CMU, ...

 About 100K lines of C++, 70K lines of OTcl code, and 50K

lines of examples and documentation

 Platforms

 Most Unix systems

 Linux
 FreeBSD, NetBSD, ...

 Sun Solaris
 HP UX, SGI

 Windows 95/98/NT

 Words of Caution

 Not a finished product

 Bugs

 Changes of the architecture

 Users need to verify that

 their simulations are not invalidated by bugs

 the model implemented in ns conforms to what they expect

 Split-language Programming

 C++ for the core components

 (low level event processing, packet forwarding, etc.)

 OTcl for control operations

 (to build the simulation scenario, model dynamic configurations, etc.)

 TclCL as link between C++ and OTcl

 Necessary to know both languages

 Difficult to debug

 OTcl and C++

 (Partial) Class Hierarchy

 Node Structure

 Creating a Simulation

 Create the event scheduler
 Create the network topology

 Specify traffic patterns

 Insert errors, modify network conditions, ...

 Tracing

 Visualization and analysis

 Example Setup

 Simulator Object and Tracing

 set ns [new Simulator]

 set f [open out.tr w]

 $ns trace-all $f
 set nf [open out.nam w]

 $ns namtrace-all $nf

 Network Topology

 set n0 [$ns node]

 set n1 [$ns node]

 set n2 [$ns node]

 set n3 [$ns node]

 set n4 [$ns node]

 set n5 [$ns node]

 $ns duplex-link $n0 $n2 10Mb 1ms DropTail

 $ns duplex-link $n1 $n2 10Mb 1ms DropTail

 $ns duplex-link $n2 $n3 500Kb 20ms DropTail

 $ns duplex-link $n3 $n4 10Mb 1ms DropTail

 $ns duplex-link $n3 $n5 10Mb 1ms DropTail

 Traffic Agents

 TCP
 set tcp [new Agent/TCP]
 set sink [new Agent/TCPSink]

 $ns attach-agent $n0 $tcp

 $ns attach-agent $n4 $sink

 $ns connect $tcp $sink

 set ftp [new Application/FTP]

 $ftp attach-agent $tcp

 Traffic Agents

 UDP
 set udp [new Agent/UDP]
 set null [new Agent/Null]

 $ns attach-agent $n1 $udp

 $ns attach-agent $n5 $null

 $ns connect $udp $null

 set cbr [new Application/Traffic/CBR]

 $cbr attach-agent $udp

 $cbr set packetSize_ 1000

 $cbr set rate_ 400000

 ... and start the simulation

 $ns at 2.0 "$ftp start"

 $ns at 4.0 "$cbr start"
 $ns at 8.0 "$cbr stop"

 $ns at 10.0 "$ns flush-trace; close $f;
 close $nf; exit 0"

 $ns run

 Trace File Format

 � � ��� �� � �	
� � � � ��� � � ��

� �� � � � � � � �� � � � � ��� � � � �� � � �� � � �� �� � � 	 �� � � � � ��� � � � � �

 + 4.053333 1 2 cbr 1000 ------- 1 1.0 5.0 6 415
 - 4.053333 1 2 cbr 1000 ------- 1 1.0 5.0 6 415
 r 4.054704 0 2 tcp 1000 ------- 0 0.0 4.0 209 411

 + 4.054704 2 3 tcp 1000 ------- 0 0.0 4.0 209 411

 r 4.055244 1 2 cbr 1000 ------- 1 1.0 5.0 5 412
 + 4.055244 2 3 cbr 1000 ------- 1 1.0 5.0 5 412
 r 4.05552 3 4 tcp 1000 ------- 0 0.0 4.0 198 384

 + 4.05552 4 3 ack 40 ------- 0 4.0 0.0 198 416
 - 4.05552 4 3 ack 40 ------- 0 4.0 0.0 198 416
 r 4.057552 4 3 ack 40 ------- 0 4.0 0.0 197 413

 ... Perl is your friend

 Throughput at Node 2

 0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

tcp 0
cbr 1

 Visualization with NAM

 Packet traces presented as graphical animation

 Additional NAM information in TCL trace files (node color,

...)
 Captures simulation dynamics

 "Intuitive" feel for what the protocol is doing

 Trace files, time sequence graphs, etc. are still necessary

for in-depth analysis

 Creating your own components

 Look at existing components

 Try to reuse existing modules

 Decide about inheritance, fill in functions

 Linkage to OTcl, implement complementary OTcl

classes/functions

 Interaction of C++ and OTcl is one of the most difficult

design tasks

 Other Features

 Multicast Routing

 SRM
 RTP/RTCP
 Wireless Networks (WaveLan, Satellite, ...)

 Mobile IP
 QoS (IntServ, DiffServ)

 Other Features

 Automated scenario generation

 Test suites
 Abstraction
 Trace driven simulation
 Network emulation

 Resources

 Website: http://www.isi.edu/nsnam/ns/

 ns documentation, tutorials, FAQ

 CVS logs, class hierarchy, ...

 Mailing lists

 ns-users@isi.edu

 ns-announce@isi.edu

 Much more can be found on the web...

