Musterlösung Übungsblatt 3

Aufgabe 1

a)

Dezimal	Dual	Hexadezimal
6	110	6
127	111 1111	7F
542	10 0001 1110	21E
1024	100 0000 0000	400

Lösungsweg am Beispiel 542:

Dezimal \rightarrow Dual:

Dual \rightarrow Hexadezimal:

$$\underbrace{\frac{10}{2}}_{2}\underbrace{\frac{0001}{1}}_{1}\underbrace{\frac{1110}{E}}_{E}$$

b)

Dezimal	1er-Komplement	2er-Komplement		
-7	1111 1000	1111 1001		
-17	1110 1110	1110 1111		
0	1111 1111	0000 0000		
	oder 0000 0000			
27	0001 1011	0001 1011		

Lösungsweg am Beispiel -17:

Dezimal: +17Dual: $0001 \ 0001$ Einerkomplement: $1110 \ 1110$ Addition von $0000 \ 0001$ \Rightarrow Zweierkomplement: $1110 \ 1111$ entspricht dezimal -17

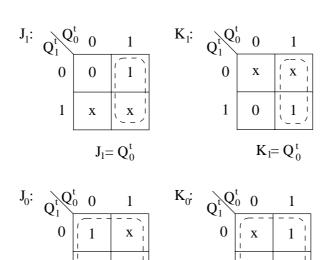
c)

2er-Komplement	Dezimal		
0000 1001	9		
0001 1001	25		
1111 1011	-5		
1111 1111	-1		

Lösungsweg am Beispiel 1111 1011:

Zweierkomplement: 1111 1011 Subtraktion von 0000 0001 \Rightarrow Einerkomplement: 1111 1010 Komplementierung: 0000 0101

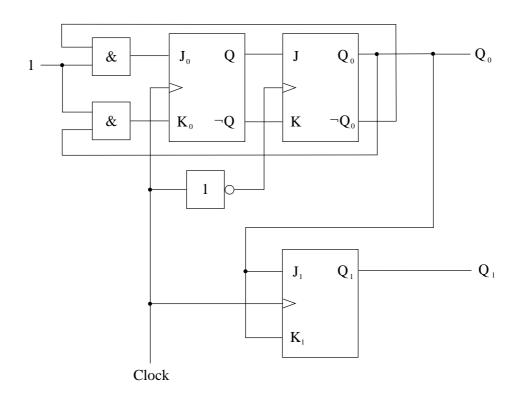
$$0 * 2^7 + 0 * 2^6 + 0 * 2^5 + 0 * 2^4 + 0 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 5$$


Höchstwertiges Bit 1 \rightarrow 1111 1011 entspricht -5

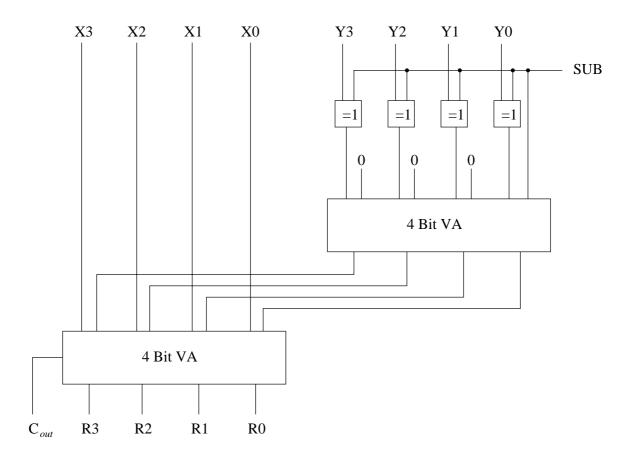
Aufgabe 2

a) und b)

\mathbf{Q}_1^t	Q_0^t	Q_1^{t+1}	Q_0^{t+1}	J_1	K_1	J_0	K_0
0	0	0	1	0	X	1	X
0	1	1	0	1	X	X	1
1	0	1	1	X	0	1	X
1	1	0	0	X	1	X	1


c)

 $K_0 = 1$


 $J_0 = 1$

d)

Damit der Zähler nur einmal pro Takt seinen Zustand ändert ist es notwendig, Q_0 in einem Master-Slave-Flip-Flop zu speichern. In der obigen Lösung bilden die zwei oberen normalen JK-Flip-Flops, die zwei UND-Gatter und der Inverter ein Master-Slave-JK-Flip-Flop.

Aufgabe 3

 $\begin{array}{l} {
m SUB} = 0 \rightarrow {
m Addition} \\ {
m SUB} = 1 \rightarrow {
m Subtraktion} \\ {
m C}_{out} \rightarrow {
m Carry \ out \ (\ddot{
m U}bertrag)} \end{array}$

Ist SUB=0, so wird im rechten Volladdierer 0 zu Y addiert. Ist SUB=1, so wird durch die XORs das Einerkomplement von Y gebildet und im rechten Volladdierer 1 zu Y hinzugezählt. Das Ergebnis ist das Zweierkomplement von Y.