
Implementation Of A Java Applet For
Demonstration Of Block-Matching Motion-

Estimation Algorithms

Holger Peinsipp

Department of Computer Science IV
Prof. Dr. Wolfgang Effelsberg

Faculty of Mathematics and Computer Sciences
University of Mannheim

October 2003
Supervisor: Dirk Farin

 1/30

Table of content

1. Introduction..2

2. What is motion estimation...3

2.1 The idea of Motion Estimation...3
2.2 How blockmatching works...5
2.3 Approaches for reducing the computation complexity.............................6

3. The algorithms...7

3.1 Full search algorithms...7
3.2 One-dimensional full search algorithm (1DFS) [1]..................................8
3.3 Three-step search algorithm (TSS) ..10
3.4 New three-step search algorithm (NTSS) [5]..11
3.5 Four-step-search algorithm (FSS) [2]...12
3.6 Cross-search algorithm (CSA) [3]..13
3.7 Gradient descent search algorithm (GDS)..14
3.8 One-dimensional gradient descent search (1DGDS) [7]........................15
3.9 Circular-zone-search algorithm (CZS) [6]..18
3.10 Successive elimination algorithms ...20
3.11 Evaluation of computational complexity..21

4. The Java applet..24

4.1 “Step-by-step” mode ..25
4.2 “All-at-once” mode...28
4.3 Image set selection..29

5. Index..30

6. Bibliography..31

 2/30

1. Introduction

Comparing digitally stored video sequences and those “stored” on celluloid and considering the fact

that data-storage or data-transmission capacity still is restricted in computer technology, this

comparison shows the necessity of compressing the video-data: Using the same approach to store

videos digitally as they are in the classic way on celluloid would require at least 25 still images per

second. A high-quality 90 minute movie with a resolution of 720*576 pixels and a 24-bit colour

depth per pixel could require of over 156 GB of storage capacity. Transmitting this amount of data

over the Internet is impractical, especially when real-time performance is needed. This

uncompressed video needs a transmission bandwidth of over 237 MBit/s. Similar problems occur

when storing the data to disc – only very few memory devices have the necessary capacity.

MPEG-encoding uses - among other compressing techniques - block-based motion-compensation to

reduce the memory requirements of video files. This method takes advantage of temporal

redundancy between two or more frames. Consider for example a video showing a car driving

across the image. The frames will all show the same car - only with a slightly changed position

between successive frames. Motion estimation tries to detect similar areas within two frames. It

calculates a motion vector describing the movement of these areas from one frame to the next.

Instead of storing nearly the same image data twice for these areas, it is only stored once and the

video decoder then moves the content of the image along the calculated motion vector.

This study presents a survey of various motion estimation algorithms. A Java applet was developed

which illustrates the described algorithms with a step-by-step explanation. Additionally, the

computational complexity and matching accuracy are measured, which enables a quantitative

algorithm comparison.

 3/30

2. What is motion estimation

2.1 The idea of Motion Estimation

When using motion estimation for compressing video data, this compression technique uses the fact

that usually not the whole image content changes from one frame of a video to the next, but only

regions. Often these regions do not disappear from the image, they just change their location within

the image - see Figure 1 and 2. With a fixed camera position, a scene like this will show a static

non-moving background with almost no changes, and an object – the boat – moving in front of this

background. The object itself also changes its appearance only slightly on its way through the

scene.

The idea of motion estimation is to detect all objects within an image, compute their motion and

represent it by motion vectors. The advantage of this technique is, that the image data for the

background and for the objects is stored only in one frame - the following frames contain the

motion vectors. A static background then is represented by a zero vector because it has not moved

whereas the object movement is stored with non-zero motion vectors, pointing to the new locations

of the objects. If the camera position is not fixed, the static background also turns into a moving

object.

As mentioned , the motion of semantic objects in videos should be represented by motion vectors.

The problem is to detect the objects and to find their exact boundaries. If you take a car for

example: is it a single object? Or do you distinguish between the tires and the chassis? And if you

do, what about the driver sitting in the car? It is very hard to define semantic objects automatically.

E.g. region growing algorithms only connect regions with similar colour or texture, neglecting the

semantic meaning. Typical problems here are scenes with ocean and sky. Since both may have a

similar colour. On the other hand, a mountain that is partly covered with snow will be divided into

several objects because rough stones and plain white regions do not look very similar. The same

Fig. 1 A boat cruising on a river and
a coastguard boat entering the scene.

Fig. 2 The coastguard boat has
moved towards the centre of the
frame. Though the camera is slightly
moving, consider the coastguard boat
as an object moving in front of an
(almost) static background.

 4/30

applies to trees: why do leaves belong to the branch? Optically they do not have anything in

common. These few examples show that it is very difficult – if not impossible – to recognize

semantic objects in an image the way the human brain does. Therefore other simple techniques have

been invented. MPEG2 uses block matching to relocate a region in another frame. This means that

each frame is decomposed into a raster of rectangular blocks. For each of them, motion estimation

algorithms try to find a motion vector pointing to its new position in the adjacent frame. Section 2.2

will have a closer look at how this is done. Each block is considered as an object. If many blocks

belong to the same semantic object of the scene, they will have the same or very similar motion

vectors. While not being as coding efficient as an abject based approach, block based motion

compensation does not depend on a robust segment ion algorithm.

A further problem is that the motion estimation

algorithms do not work properly for all kinds of

motion. We distinguish between translatory motion,

scaling and rotation (Fig. 3). A translation along

the x and y axes also leads to translational motion in

the image, while a translation along the z-axis is

observed as a change of object size.

Even tough scaling scaling and rotational motion

cannot be represented with motion vectors

accurately, splitting the object into small blocks

with independent motion vectors allows to approximate all kinds of motion.

Fig. 3 Different kinds of motion

z

x

y

rotation

translatory motion

zoo

camera

 5/30

2.2 How blockmatching works

As explained above, MPEG2 encoders use block matching algorithms to relocate an object in

another frame. Therefore the image is segmented into a raster of rectangular blocks of 8 by 8 pixels.

Depending on the algorithm used for motion estimation, a block within a certain search range is

compared – matched – with the source block. In the following, we assume that input images are

greyscale only.

Block matching uses a value called “block distortion measure” - BDM - to rate the similarity

between two blocks. The basic idea is to sum up the differences of the pixel luminances of pixels

located at the same position in the two blocks. There are different algorithms to perform this

calculation:

Let ci(x,y) detect the luminance of pixel (x,y) in block i.

The „ Mean Squared Error“ (MSE) uses the sum of squared differences between the two luminance

values. The sum is divided by the quantity of the compared pixels to normalize the result:

diff = 1
n∗m

∗∑
y=0

m−1

∑
x=0

n−1

c1 x , y −c2 x , y 2

The „Sum of Absolute Differences “ (SAD) differs only slightly by using absolute differences

instead of squared differences:

diff = 1
n∗m

∗∑
y=0

m−1

∑
x=0

n−1

∣c1 x , y −c2 x , y ∣

It is not necessary to normalize the result in the end, since we only need the minimum cost block

position and not the absolute cost itself. In fact, it costs an extra mathematical operation per

comparison. However, in the applet, we used normalized costs to make the results independent of a

specific block size.

Usually, the motion estimation algorithms do not search a whole frame for the best matching block.

A search range defines a search area around the coordinates of the source block. It is necessary to

understand that the source block is from a frame A, and the search area as well as the resulting best

matching block is located in a frame B. Usually these are successive frames in a video.

The most simple search algorithm, full search (section 3.1), to find the block with the lowest BDM

value within a specified search area, is to match the source block to every existing block in this

 6/30

area. The search-area is a rectangular area around the source block. Its size, and therefore the

number contained search coordinates, depends on the horizontal search range rx and the vertical

search range ry,:

size of search area=2∗r x1∗2∗r y1

We will consider rx and ry always of the same size, therefore we will only use the value r.

Matching all those blocks in the search area to the source block is the computationally most

intensive algorithm: For a search range of 10 pixels and also a block size of 8 by 8 pixels, there are

2∗1012=441 blocks to be matched with 64 operations per block. In total, these are 28,2244

operations for each block.

2.3 Approaches for reducing the computation complexity

As demonstrated in the last paragraph, a full search over the whole search area comes along with a

very high computation demand. Though this high demand only occurs once when encoding the

video, it is essential to reduce it, especially when real-time encoding is required.

Very often objects just move horizontally or vertically or not at all. E.g. in a news broadcast, the

anchorman just sits or stands in front of the camera and hardly moves. In this case it would be

reasonable to start the block-matching for each block at the same position the block had in the

previous frame. Some of the algorithms in section 3 use this assumption of zero movement to

increase their performance (e.g. Cross Search Algorithm, New Three Step Search). Prior to

searching somewhere else, they try to match the same coordinates again or the area close to it.

Others assume a certain structure of the error surface, which is the surface representing the BDM

values over the search area, to locate the minimum. This minimum is the best matching block in the

search area.

It is necessary to understand that these algorithms only find blocks that are similar, respectively

have a low BDM value, to the source block. Very often, it would be impossible to find the exact

block again – e.g. due to changes of image brightness. The human eye is not that strict and accepts

small blocks which look very similar to the original block. It is a matter of choosing a good

threshold value – which defines a block as similar or not – to achieve a good video quality and also

a short encoding time.

 7/30

3. The algorithms

In this section, often a grid is used to present a schematic overview of

the search area, as displayed in Fig. 4. The centre of the grid is the

coordinate (0,0). Red dots highlight the search coordinates, the

respective MEA will compare with the source block. Each grid

coordinate represents a distance of one pixel. If new search coordinates

are added to the grid, the newer ones are displayed larger than the

older ones.

3.1 Full search algorithms

This is a simple MEA that compares the source

block with the blocks at every position within the

search area. As mentioned above, the calculation

costs of this algorithm are very high, but it

guarantees to find the optimal block position

within the search range.

The number of comparisons increases

quadratically (n2) with the search range:

The number of comparisons is: 2 r12∈O r2

Fig. 5: Full Search Algorithm

horizontal search range

original block­
position

ve
rt

ic
al

 s
ea

rc
h

ra
ng

e

search area

Table 1 performance of full search

5 121
10 441
15 961
20 1681

search range
r [pixel]

compared
blocks

Fig. 4 Grid, representing the
search area. Some search
coordinates are highlighted

Fig. 6 Performance of full search

 8/30

3.2 One-dimensional full search algorithm (1DFS) [1]

In contrast to the simple full search algorithm, which through the whole search area, the one-

dimensional full search approximates each coordinate in separate steps. Assuming increasing BDM

values if the distance from the global minimum increases, some algorithms try to “follow” the

gradient downwards to that minimum. By doing this, there is a great risk in being trapped in a local

minimum. One dimension full search uses a different approach. Instead of following the gradients,

1DFS starts with searching the minimum for the row (x,0). It continues by searching the whole

column of the coordinate with the lowest BDM value. Then these two search processes are

repeated with a reduced search range to improve the result.

1. Start with a search pattern of all coordinates (x,0) within the search area and find the

coordinate with the lowest BDM value.

2. Continue by creating a new search pattern, consisting of all coordinates that are vertically

lined up with the current best matching position. Again search the block with the lowest BDM

value.

3. Halve the search range. Proceed like in step 1, this time with the row of the current best

matching block.

4. Step 2 is repeated with the reduced search range

Fig. 7 1DFS in step 3

step 1
min of step 1

step 2
step 3

min of step 2

 9/30

One-dimensional full search performs faster than simple full search. The number of compared

blocks just increases linearly when increasing the search range:

Number of performed comparisons: 2∗2 r12∗ 1
2

r1∈O r 

Table 2 performance of 1D
full search

5 36
10 64
15 96
20 124

search range
[pixel]

compared
blocks

Fig. 8 Performance of 1DFS

 10/30

3.3 Three-step search algorithm (TSS)

Another fast motion estimation algorithm is the the three-step search. Though powerful in itself,

some other algorithms base on TSS and add some enhancements, e.g. NTSS (section 3.4), FSS

(section 3.5) and CSA (section 3.6). Like some other algorithms, e.g. the gradient descent

algorithms (section 3.7, section 3.8), TSS does assumes increasing BDM values the more the

distance to the minimum increases. Starting at the centre, TSS searches for the minimum BDM

value using 3x3 search patterns of decreasing size. Each step uses the the current best matching

coordinate as centre for its search pattern.

Note: TSS, and all algorithms based on it, will be presented with a fixed search range. In some

papers, e.g. [3], the authors use a variable search range, others like [2] use a fixed one. For

presentation purposes, a fixed search range is easier to understand.

This is how TSS proceeds:

1. Create a search pattern consisting of 9 coordinates. These are the

centre of the search area (0,0) and the 8 coordinates with a

horizontal and/or vertical distance of 4 pixels to it. Find the

coordinate with the minimum BDM value (Figure 9).

2. Halve the search range to to 2. Create a new search pattern with

the eight coordinates surrounding the current best matching

coordinate. Again, find the coordinate with the minimum BDM.

3. Reduce the search range again - this time to 1 pixel. Create a

search pattern existing of the eight coordinates surrounding the

current best matching position. Finally, search for the minimum

BDM. This is the coordinate the motion vector will point to.

Instead of a global monotonic error surface, TSS assumes a local

monotonic surface surrounding the occurring minima. Step by step TSS

approaches closer to what it thinks is a global minimum of the search

area.

The number of compared blocks is always to 25.

Fig. 9 TSS in step 1

Fig. 11 TSS in step 3

Fig. 10 TSS in step 2

 11/30

3.4 New three-step search algorithm (NTSS) [5]

The NTSS algorithm is a more centre biassed variant of TSS: in the first step the eight directly

adjacent blocks to the centre coordinate are added to the initial search pattern. Two extra features

are introduced to enhance TSS. “First-step-stop” will abort the search if after having searched

through all initial coordinates, the minimum BDM is still the centre coordinate. “Half-way-stop”

aborts the search after step two: if the minimum BDM of the initial 17 coordinates is located at one

of the eight coordinates directly surrounding the centre, finally the eight blocks surrounding this

coordinate are searched. As a result, NTSS performs faster with stationary or quasi-stationary

blocks.

The algorithm in detail:

1. Create the initial search pattern, which consists of the centre

coordinate, the eight blocks surrounding it at a distance of one

pixel and at a distance of four pixels. (Fig. 12)Search the

minimum BDM of this pattern. If the centre coordinate is the

minimum BDM, the search is finished (first-step stop).

Otherwise: Go to step 2.

2. If the minimum BDM is one of the eight direct neighbours of the

centre coordinate, add the eight direct neighbours of this block to

the search pattern and search it again for the minimum BDM. After that, the search is done.

Otherwise: Continue like TSS: add the four coordinates surrounding the minimum BDM like

an “X” at a distance of 2 pixels and search for the new minimum BDM.

3. Search the four coordinates surrounding the current minimum BDM like an “X” at a distance

of 1 pixel for the final minimum BDM.

NTSS requires 17 comparisons in the first-step-stop condition, aborts the search after 25

comparisons for the half-way-stop, and 33 otherwise.

Fig. 12 Initial search pattern
of NTSS

 12/30

3.5 Four-step-search algorithm (FSS) [2]

This algorithm is also based on the TSS algorithm. The intention of this algorithm, which the

authors Po and Ma describe in [2], was creating an algorithm which achieves better results than the

TSS algorithm while having a better worst case performance than the NTSS algorithm. The search

range of FSS is fixed to 7 pixels.

Summary of the algorithm:

 1) Create a 5x5 search pattern around the centre of the search

area, consisting of the nine coordinates surrounding the centre.

Find the minimum BDM of these coordinates. If the minimum

is located at the centre, proceed with step 4.

Otherwise: Go to step 2

 2) The search pattern still has the size of 5x5. Depending on the

location of the current minimum BDM, new search

coordinates are added to the pattern.

 a) If the current minimum BDM is located at the corner of the

pattern in step 1), add 5 additional coordinates located next

to the corner as shown in Figure 13.

 b)If the minimum BDM is located at the centre of a vertical

or horizontal axis of the search pattern in step 1), add

coordinates to the pattern as shown in Figure 14.

Search for the new minimum BDM. If its position has not

changed after this search, continue with step 4.

 3) Repeat step 2 once and proceed with step 4.

 4) The search window size is reduced to 3x3 around the

minimum BDM. Search all eight new coordinates in this

pattern for the final minimum BDM.

The performance of the FSS algorithm varies from 17 (9+8) compared blocks, best case, to 27 (9 +

5 + 5 + 8) compared blocks, worst case. This performance is only slightly worse than the original

TSS algorithm with the possibility to perform equal or better in average or best case scenarios.

Compared with the NTSS algorithm, FSS performs equal with “first-step stop” (17 compared

blocks), which is the best case, it performs equal or better in the average case and definitely

performs better in the worst case (NTSS: 33 compared blocks).

Fig. 13 Min. BDM value was
found at the corner of the pattern
- FSS adds additional search
coordinates surrounding that
corner

Fig. 14 Min. BDM value was
found at the centre of a
horizontal axis - FSS adds three
additional search coordinates
parallel to that axis

 13/30

3.6 Cross-search algorithm (CSA) [3]

CSA is also one of the algorithms based on TSS though there are some differences. First of all,

CSA uses a threshold-based first-step stop. This increases performance for videos or regions of a

frame with no motion or plain textures (like plain sky). It also has a reduced amount of initial search

coordinates - five instead of nine. These are the centre-coordinate and the four coordinates

surrounding the centre like an “X” at a distance of 4 pixels.

1. Match the search block to the centre block (0,0). If the BDM is

lower than the predefined threshold, stop the search.

Otherwise: proceed with step 2.

2. Set search range r = 4

3. Add the coordinates surrounding the centre at the edges of an “X”

at a distance of r to the search pattern. Find the minimum BDM.

4. Halve the search range.

5. If the search range is greater than one, go back to step 3.

Otherwise: If the actual minimum BDM position is equal to the

previous one or located top-right or low-left to it, add the four

coordinates surrounding it like a Greek cross (“+”) to the pattern.

If it is located top-left or low-right to the previous, add the four

coordinates, surrounding it like a St. Andrew's cross (“X”) to the

pattern.

Search this pattern for the location of the final minimum BDM.

Cross search needs just one comparison if the bail-out criteria is met. Otherwise it needs 17

comparisons.

Fig. 15 Initial pattern of
CSA

Fig. 16 A new cross is set up
around the min. BDM
coordinate

 14/30

3.7 Gradient descent search algorithm (GDS)

The GDS algorithm uses another assumption to

perform fast motion estimation. Different from all

TSS-based algorithms, GDS assumes that the

surface of the function, which represents the BDM

values within the search area, contains only a

single minimum (Fig. 17). The idea is always to

follow the steepest gradient to find the way to the

absolute minimum BDM. Therefore, a search

pattern consisting of the centre coordinate and the

eight direct neighbours are matched to the source

block. Afterwards this step is repeated with the

minimum BDM coordinate from the previous step

as centre. This procedure is repeated until the new

minimum BDM value is equal or less than the one

from the previous step. A possible variation is that

the algorithm also stops searching if the minimum

BDM is lower than a certain threshold.

As mentioned above, GDS assumes an error

surface with just a global minimum. If there are

also local minima, there is a great risk that the algorithm is being trapped in those. GDS can reach

the global minimum, but this may depend on the first search coordinate. Referring to Fig. 18, GDS

started at position 1 will be trapped in a local minimum. If the initial coordinate is at position 2,

GDS will find the global minimum.

The performance of GDS cannot be defined clearly because the number of performed comparisons

varies very much. The performance depends on the structure of the error surface.

Fig. 17 Error surface containing only a global
minimum. GDS will find the minimum

Fig.18 Error surface containing multiple local
minima and a global minimum. GDS may find the
global minimum

1

2

Fig. 19 GDS starts with a
initial search pattern
containing only one
coordinate.

Fig. 20 GDS in step 2: The
eight coordinates
surrounding the previous
min. BDM value are added.

Fig. 21 GDS in step 4.

 15/30

3.8 One-dimensional gradient descent search (1DGDS) [7]

In [7], an improved GDS algorithm is described which reduces the main disadvantage of GDS, the

risk of being trapped in local minima. Therefore some changes have been made. First of all,

1DGDS does not have one fixed starting coordinate for the

search – GDS always starts at the centre (0,0). 1DGDS uses

the up to four motion vectors of prior searches to find a better

starting coordinate (Figure 22). In addition to the centre

coordinate, the coordinates resulting from those motion

vectors are tested for the one with the minimum BDM value.

The idea is to start the search closer to the global minimum.

This procedure is called initial-point determination and takes

advantage of the fact that very often the direction of motion is similar for blocks in the same region.

A further deviation from ordinary GDS is that the search is performed

in one direction at a time. Four directions are defined (Figure 23). Each

direction provides two new coordinates per search step. Only if the new

coordinates in one direction do not lead to decreasing BDM values, the

search direction is changed. Also the search range is increased

compared to GDS. While GDS only checks the neighbouring

coordinates (search range of 1 pixel), 1DGDS makes two search runs,

the first one with a search range greater than 1 pixel. During the first

search run, the algorithm probably “jumps” over the small valleys of local minima due to its greater

search range. In the second run, a more precise search for the global minimum starts in the located

area with a search range of 1. The risk of being trapped in local minima is reduced.

Respecting the increase in performance that a centre biased orientation may achieve, 1DGDS

algorithms stops, if after searching through two directions the coordinate with the minimum BDM

value is still the initial one. This reduces the minimum amount of comparisons in case that the

initial coordinate is the one with the minimum BDM value.

The following paragraph will show how 1DGDS works in detail:

Fig. 22 The motion vectors of the four
neighbouring blocks are used to find a
better starting coordinate

Top left block Top block Top right block

Current
processing block

Left block

Fig. 23 The four directions
of 1DGDS

II

II

I I

III

III IV

IV

 16/30

Let d=4 be the step size for the first search run.

1. Set search direction = 1 (Figure 23).

2. Match the source block to the coordinates, which the motion vectors of the neighbouring

blocks point to, as well as to the centre coordinate (0,0). The one with the lowest BDM value

will be the initial coordinate for the search and is the current processing point.

3. Add the two coordinates lined up with the current processing point at distance d in the search

direction.

4. Calculate the BDM value for the new coordinates. If the coordinates with the lowest BDM

value is one of the two new coordinates, this is the new current processing point. Repeat step

3.

Otherwise: If search direction = 2 and the coordinate with the minimum BDM is still the

initial coordinate, stop the search. The final motion vector then points to this coordinate.

If search direction < 4: increase search direction by 1. Repeat step 3.

If search direction ≥ 4: set search direction = 1. Set d=1.

5. Do the same thing as in step 3 but this time with d=1.

6. Calculate the BDM value for the new coordinates. If the coordinate with the lowest BDM

value is one of the two new coordinates, this is the new current processing point. Repeat step

5.

Otherwise: If search direction < 4: increase search direction by 1. Repeat step 5.

If search direction ≥ 4: The final motion vector points to the current processing point.

Since the proceeding of this algorithm is not very easy to understand, it is also illustrated as a flow

diagram in Figure 24 on the following page.

Again it is not easy to determine what the performance of 1DGDS will be. The optional search for

a good initial search coordinate costs up to four comparisons. The bail-out-criteria may stop the

algorithm after another five comparisons. If not, the final number of compared blocks depends on

the image content and motion.

 17/30

Fig. 24 Flow diagram of 1DGDS

Perform one dimensional
gradient descent search

Set direction =
distance d = 1

Perform one dimensional
gradient descent search

If direction =

Set direction =
next direction

false

false
If direction =

Set direction =
distance d = 4

If
direction =

and
min. BDM still at initial

coordinate

Set final motion
vector to (0,0)

true

Set direction =
next direction

Final motion vector points
to min. BDM coordinate

true

false

true

 18/30

3.9 Circular-zone-search algorithm (CZS) [6]

While the previously presented algorithms only try to find a motion vector to a best matching block,

CZS goes one step further. Keeping in mind that data reduction is the main target of motion

estimation, the design of CZS favours short motion vectors. The idea is that longer motion vectors,

e.g. those pointing to the edges of the search area, need more bits when encoded than short ones.

CZS searches circular zones around the centre of the search area, beginning with the innermost

(Figure 25). A threshold value defines the desired minimum quality of the block to be searched, by

setting a minimum BDM value. The first block found which under-runs this threshold is the one the

final motion vector will point to, though there might be blocks with a lower BDM value within the

search area. Due to this behaviour, shorter motion vectors are preferred to longer ones.

The setting of this threshold also affects the performance of the algorithm and the quality of the

encoded video. A higher threshold leads to better matching blocks but will keep the algorithm

searching for a longer time, into the outer regions of the search area.

Motion very often is homogeneous for an area of the frame. Its direction very likely does not

change abruptly form one block to the next. Taking advantage of this fact, CZS starts by using the

motion vector, MVpredicted, of the previous block. A small area around the resulting coordinate is

searched for a good matching block. Again a threshold BDM value will decide whether a block is

good enough or not.

Preferring short motion vectors makes this algorithm clearly centre

biased. Though this is not optimal in general, a centre-biased

algorithm has its advantages, e.g. in video-phoning or -conferences. In

those cases, mostly faces are filmed which very likely do not perform

sweeping movements. The best matching block usually will be found

near the centre of the search area. Focussing the search on this smaller

area leads to a better performance and a faster encoding time, which is

needed for real time encoding in video-phoning.

CZS builds up circular search zones around the centre (see Figure 25). The zones are constructed

using the following formula:

round MV h
2MV v

2=r−1

where MVh and MVv are the distance of the currently examined block to the centre and “r” is the

corresponding zone. In order to describe the algorithm, the following symbols are used:

MVx motion vector

T1, T2, T3 predefined threshold values. T2 < T3

M number of circular zones around the predicted coordinate

Fig. 25 Definition of circular
zones around the centre.

1

2

2

2

222

2

23

3

3

3 3 3

3

3

3

333

 19/30

N number of circular zones around the centre of the search area. Usually M < N.

i counter for the circular zones

1. If the current source block is the first one examined in this frame, set MVpredicted to (0,0). Then

proceed with step 5.

Otherwise: Set MVpredicted to the motion vector of the previous block.

Circular search around predicted motion vector

2. Construct M circular zones around MVpredicted . Set i = 1.

3. Compute the BDM value for each block within the circular zone i around MVpredicted .

4. If the minimum BDM found is less than T1 , proceed with step 10.

Otherwise: If i<M, set i = i+1 and go back to step 3. If not, proceed with step 5.

Circular search around (0,0)

5. Construct N circular zones around (0,0) in the search area. Set i=1 and LAST = false.

6. Compute the BDM value for each block within zone i around (0,0).

7. If the minimum BDM value found so far is less than T2 or LAST = true, proceed with step 10.

8. If the current minimum BDM is greater than T2 but less than T3, set LAST = true.

9. If i<N set i=i+1 and proceed with step 6.

Final step: Use MV found

10. The motion vector of the block with the minimum BDM value is chosen.

The performance of CZS is hard to determine. Many factors affect the number of compared blocks:

The search range, which defines the size of search area, the number of circular zones around the

predicted motion vector (the M value) and the threshold values, which determine the moment when

the algorithm bails out of the search before reaching the last unsearched coordinate.

As mentioned above , this algorithm is highly specialized to encode videos with little motion, fast.

The authors point out that CZS works best with “lower bit rates, which are the bit rates of interest

for video conferencing” and that it “does not perform well in video sequences with large objects or

camera motion” ([6]).

 20/30

3.10 Successive elimination algorithms

This work has presented only a few of the existing motion estimation algorithms and thereby has

focused on those that make heuristic assumptions to reduce the number comparisons. Another

approach to increase performance is to optimize the “Full Search” algorithm. Though it has the

worst performance (see section 3.11) , the quality of the located blocks still is the best of all

presented algorithms.

The idea is to find a quick test to eliminate as many regions as possible from the search area.

Multilevel successive elimination algorithms like [8] take this approach. They aggregate the

information of the single pixels by summing up the colour values of

neighbouring pixels. For example, the colour values of the pixels of

2x2 square are summed up and are represented by a new field. These

fields are aggregated again – that is what is meant by “multilevel”

(Fig. 26). Each of these fields represents a greater number of fields on

the level below. A possible starting point for the search in the

multilevel architecture may be using the motion vectors from adjacent,

previously searched blocks. This vector points to a region within the

search area which also is represented by an aggregated value on a higher level. At this point the

algorithm uses the “Schwartz Inequality” to eliminate regions from the search area. Referring to this

inequality, the aggregated value on a higher level can be equal or higher than the sum of single

values it represents on the levels below. It never can be lower. By this fact, the value resulting from

the first guess eliminates all regions with a higher aggregated value. It is necessary to understand

that this elimination will never affect a possible better matching block than the one found. This

procedure is repeated successively for the different levels. In the end only a few blocks “survive”

the elimination process and are matched. The number of compared blocks is drastically reduced

though a full search is performed.

Fig. 26 Pyramid, representing
the multiple aggregation-levels
for the BDM values in
successive elimination
algorithms

 21/30

3.11 Evaluation of computational complexity

This paragraph presents an overview of how the different algorithms perform with the example

frames from the applet. When possible, a search range of ten pixels is chosen, and if a threshold

value is needed, it is set to 12.

The algorithms have been tested with frames of the video sequences “Stefan” and “Coastguard”. In

the “Stefan” sequence the search ranges for some regions are to small to find similar blocks. This is

a result of the fast movement of the person in the scene, and 5 missing frames between the two

presented. Those frames have been left out for presentation reasons. The higher average BDM

values lead to a generally lower performance in the comparison. As a result, all algorithms have a

better performance in the “Coastguard” sequence.

It is not possible to compare all algorithms under the same conditions. Most of the TSS-based

algorithms have a fixed search range, others have variable search ranges. Even the fixed search

ranges differ. For some algorithms, the search range is of great importance, other algorithms depend

more on a threshold value. If the threshold value in FTS is set to a high value, e.g. 50 or higher, the

search will stop almost immediately,but if

set to zero, it will run through all search

coordinates - which is the worst case

scenario. This is also a difference of the

algorithms: running through all

coordinates may be common for some

algorithms, for others it is the worst case.

In spite of these differences, the algorithms

perform nearly comparable tasks. The data

of table 3 and 4 gives an overview on how

well each of them performs.

Searching for a value representing both

variables, the average quality of the results

and the average number of compared

blocks I chose one based on the product of

quality and performance. The optimum is

a minimum of both variables – the more

the value of each variable increases, the

worse the general performance of the

algorithm becomes.

Table 3 Sequence: Stefan
(1) search range = 7 pixel
(2) search range = 8 pixel

Algorithm

Full Search 17.6230 441 338,688
1DFS 18.6982 61 47,044

19.9489 27 20,736

19.9739 30 23,802

20.6595 22 17,188
GDS 21.1903 31 24,133
1DGDS 19.7601 19 15,604
CSA 2 20.4977 14 11,368
CZS 18.4462 238 183,002

Avg. min.
BDM

Avg. #
comparisons

per block

Total # of
compared

blocks

TSS 1

NTSS 1

FSS 1

Table 4 Sequence: Coastguard
(1) search range = 7 pixel
(2) search range = 8 pixel

Algorithm

Full Search 8.4202 441 432,180
1DFS 8.7377 60 59,695

12.5873 27 26,460

12.1617 30 29,710

11.9091 21 21,257
GDS 11.6735 28 27,986
1DGDS 9.8181 18 18,141

12.4502 12 11,960
CZS 10.4940 151 18,141

Avg. min.
BDM

Avg. #
comparisons

per block

Total # of
compared

blocks

TSS 1

NTSS 1

FSS 1

CSA 2

 22/30

Due to the different search ranges of some algorithms, the size of the search areas differs and

therefore the average number of searched blocks may be affected. To get comparable values, the

number of compared blocks has to be normalized. This is done by dividing it by the total amount of

blocks within the search area. The resulting value represents the percentage of blocks compared of

the search area.

The average BDM value is normalised by dividing it by 255 – the maximum BDM value. This only

is done to get a fully normalized indicator with a maximum value of 100. This is the formula of the

indicator:

i=BDM
255

∗ c

2∗s12
∗100

where:

bdm = the average BDM value
c = the average number of compared blocks
s = the search range

See Figure 27 for the resulting performance indicators of the algorithms for the image sets of the
applet.

The 1DGDS algorithm and CSA perform best for these two examples. Full search has a really bad

performance. The costs for finding the best average BDM value do not pay off in comparison with

the other algorithms. The CZS algorithm also has a bad performance. As mentioned in 3.9 it was

designed to perform fast in video-conferencing situations with average slow object movement.

Referring to the results of the comparison, using heuristic assumptions to increase performance of

Fig. 27 Performance indicator for MEAs

Circular zone search

Cross search

One dimensional gradient
descent search

Gradient descent search

Four step search

New three step search

Three step search

One dimensional full search

Full Search

0 10 20 30 40 50 60 70 80 90 100

Performance indicator

Coastguard

Stefan

worstbest

 23/30

motion estimation algorithms pays off. Using the results from full search as a reference, the average

BDM values of the other algorithms mostly are only slightly worse though the number of compared

blocks is reduced enormously. Though the performance indicator presents “Cross Search” as the

best algorithm - the example of CZS shows that there is not one best algorithm, it depends on the

kind of video which algorithm performs best.

 24/30

4. The Java applet

The Java applet belonging to this work is written with the JDK 1.4.1 from Sun Microsystems

(http://java.sun.com). Required for the execution of the applet is the JDK 1.3.x.

The applet presents the proceedings of the algorithms in two different modi: “step by step” or “all

at once”. Two sets of images from videos, each consisting of two frames, support the presentation.

The applet starts when visiting the designated URL and will display a welcome window while

loading. Please make sure that one of the recommended JDKs or SDKs is installed and that your

browser has the right to execute Java programs.

After the loading procedure the main window will appear (Figure 28). In the top left corner, the

first frame of the current image set id displayed. The number of the frame is written on it. Switch

between the two frames by left-clicking on the image

to. The different tabs will provide more detailed

information of the comparisons when all required

settings are done. In the beginning, only the main

window tab will be activated.

On the right, a text area is displayed. Explanations to

the algorithm or hints for the settings will be provided

here, depending on the selected mode, algorithm and

the current step. Open the algorithms menu and select the algorithm of your choice. (Figure 29)

Changing the algorithm, the selected mode or the image set can only be done before pressing the

“Start” button or after the selected mode has finished. A mode can always be stopped by pressing

Fig. 29 The algorithms menu

Fig. 28 The main window

explenation
texts

tabs

control panel

menu

frames

 25/30

the “Cancel” button.

4.1 “Step-by-step” mode

Select the “step-by-step” mode from the mode menu. This mode will guide you through the settings

that need to be done for this algorithm and will show the ongoing search for the block with the

minimum BDM in detail. The user will get a good impression of how the single algorithm works.

At the same time detailed information is provided in the text area.

4.1.1. Displaying the motion

Press the “Start” button to begin the presentation of the selected algorithm. At first, the program

will propose to click on the frame presented to switch between the two frames of the selected image

set. This provides a good impression of what motion takes place from one frame to the next. This is

what the algorithms have to calculate with their different search strategies.

4.1.2. Selecting the search block

The next step orders the user to select a block within frame 1, which the algorithm should try to

relocate. The selection is done by simply clicking on the frame in the upper left corner. A red

rectangle will mark the selection.

4.1.3. Setting the search range

The following step may ask the user to select a search range.

Therefore frame two is presented in the upper left corner. A red

cross appears in the frame. The coordinates of the cross are the

same as those of the upper left corner of the selected block in the

previous frame though it may mark a different content in the frame

now. This is because the the region marked in frame 1 may have

moved in frame 2. Move the mouse over the frame while keeping

the left mouse button pressed to drag a rectangle around the selection which marks the search area.

The selected search range will be displayed. Not all algorithms have an adjustable search range.

When one of these algorithms is selected, the step is skipped.

Fig. 30 set the search range by
dragging the mouse

 26/30

4.1.4. Setting a threshold value

In the next step, a threshold value has to be set. Some algorithms need such a value to stop the

search before having compared all designated coordinates. Usually this is some sort of bail-out

criteria to reduce the search costs. The lower the threshold value is, the more unlikely it is that the

BDM value found is lower than the threshold. The maximum value is 255, which would e.g. be a

totally white block if you are searching a totally black one. The minimum value is 0, e.g. if the

algorithm finds exactly the block it searches for. Blocks that look very similar have a BDM value of

up to 15. A value of 50 is bad already. Use the slider appearing in the lower left corner to set a

threshold value of your choice. If the selected algorithm does not require a threshold value, this step

is skipped.

4.1.5. Presentation of the algorithm

With this step the “Diff image” tab and the

“Statistics” tab are activated. The program

automatically switches to the “Diff image”

tab. Also a raster appears in the lower left corner. In the control panel, the “Next” button is disabled

temporarily and three new ones are activated:

“>” Forward button - Press this button to perform the next comparison

“>>” Fast forward button - Press this button to perform the next ten comparisons

“>|” perform-all-button - Press this button to perform all comparisons

The grid (Figure 32) presents a schematic overview over

the search area. Each grey dot represents a coordinate

within the search area and by that the upper left corner of

every possible block to be searched. The red dots represent

the blocks designated to be matched to the source block by

the algorithm. A black cross marks the position that have

already been searched. The current search position is

marked by the green dot, the yellow dot marks the block

with the minimum BDM value so far. Sometimes the initial

set of search coordinates is extended by new ones after

some performed comparisons. This will also be displayed

in this raster.

The “Diff Images” tab displays a zoomed region of one of the original frame, showing the search

area to present a better overview over the ongoing comparisons. A red rectangle will show the

Fig. 31 The control panel with activated forward-, fast-
forward- and perform-all-button

Fig. 32 The grid displaying the new three-
step-search

 27/30

current search position while a yellow rectangle will mark the block with the minimum BDM value

so far. The costs for the last performed comparison, which is the BDM value, is displayed below

this image. Beneath, the source block which has been

selected in step 2 is displayed together with the current

search block and a difference image. The difference

image displays the differences of the colour value of

each pixel of the source block and the current search

block., e.g. regarding the pixels at coordinate (0,3) in

the two blocks. The pixel in the source at this

coordinate block has a value of 225 (a light grey,

nearly white) and the one in the current search block a

value of 200 (a somewhat darker grey). The difference value is 25. The pixel at coordinate (0,3) in

the difference image will have the value of 25, which is a very dark grey. The darker the pixels of

the difference image are, the more equal are the two blocks .

The “Statistics” tab provides more data about the search:

search range: the selected or predefined search range

No. of compared blocks: total of compared blocks so far

Avg. no. of compared blocks: only activated in the “all-at-once” mode

min costs occurred: the minimum BDM value so far

max costs occurred: the maximum BDM value so far

current optimal position: the coordinates of the block with minimum BDM value found

Mean distance : only activated in the “all-at-once” mode

Use the buttons of the control panel to perform the search. The next button will be reactivated

automatically after the last coordinate has been searched.

4.1.6. The result

The last step presents the result of the search. The program automatically

switches to the “Main image” tab while the other two tabs remain activated. In

the frame the selected source block is marked again by a rectangle as well as the

block with the lowest BDM value. By clicking on the frame you can still switch

between the two frames of the set. As your selected block is located in frame

one, the block with the minimum BDM value is in frame two, so the block

located in the displayed frame is marked with a red rectangle and the one in the

other frame is marked black. A red line represents the motion vector which the

algorithm has calculated. This is the vector that is stored in the MPEG-2 file for

Fig. 33 the "Diff image" tab

Fig. 34 A red
rectangle marks the
block located in the
displayed frame, a
black rectangle
marks the
coordinate of the
other block in the
second frame. The
red line is the
resulting motion
vector

 28/30

the source block when encoding the video.

4.2 “All-at-once” mode

This mode was designed to present the work of the algorithms on a whole frame instead of a single

block like in the “step-by-step” mode. It is less detailed in its description but presents a better

overview of the results. For each block in frame 1 a best matching block in frame two is searched.

A good video encoder may possibly not store each block as a motion vector with regards to the

video quality if the BDM value of the resulting block is too bad. The “all-at-once” mode was

programmed regardless of this option.

4.2.1. The settings

As explained before some algorithms need the

setting of a search range. The selected algorithm

will try to relocate each block within a search

area resulting from this range. Also some

algorithms stop the search if they find a block

with a BDM value lower than a certain threshold.

These two values, the search range and the

threshold can be set in the lower left corner with

the two sliders. If the selected algorithm has no

variable search range or threshold value, the corresponding slider will be deactivated. Press the

“Next” button to start the algorithm. Be aware that, depending on the selected algorithm and the

processor power of your computer, this action may take up to a few minutes.

4.2.2.The results

The results of the search will be presented as motion

vectors in the frame in the upper left corner. Each

block of the image now has a motion vector,

represented by a red line, which points to the location

where the best matching block within the search area

has been found. If there is no motion vector is

displayed for a block, this block has been relocated at

the initial coordinate (0,0), which means it has not moved.

The “Statistics” tab is also activated. It provides more data about the search:

Fig. 35Set the search range and the threshold value
for the algorithm

Fig. 36 The resulting motion vectors are displayed
in the frame

 29/30

search range: the selected or predefined search range

No. of compared blocks: total of compared blocks so far (for all blocks)

Avg. no. of compared blocks: the average number of searched coordinates per block

min costs occurred: the absolute minimum BDM value

max costs occurred: the absolute maximum BDM value

current optimal position: only activated in the “step-by-step” mode

Mean distance : the average minimum BDM value found per block

4.3 Image set selection

Before starting the selected algorithm or after finishing it, the set of

images can be changed. Select this option from the file menu. A new

window will appear which offers different image sets. Select one of

the sets and press “Ok”.

Fig. 37 Selecting another
image set

 30/30

5. Index

CSA Cross search algorithm

CZS Circular zone search algorithm

FSS Four step search algorithm

GDS Gradient descent search algorithm

MPEG Motion picture experts group

MPEG2 A video compression standard, defined by MPEG

MSE

NTSS New three step search algorithm

SAD

TSS Three step search algorithm

Mean squared error - a method of caluclating the distance of two values.
For a better comparison with other values, the result is squared, so only
positive results occur. -> SAD

Sum of absolute differences - a method of caluclating the distance of two
values. For a better comparison with other values, the result is the absolute
difference, so only positive results occur. -> MSE

 31/30

6. Bibliography

[1]Mei-Juan Chen, Liang-Gee Chen, Tzi-Dar Chiueh: "One-Dimensional Full Search Motion
Estimation Algorithm For Video Coding" IEEE Transaction On Circuits Ans Systems for Video
Technology, Vol. 4 No. 5, page 504-509, October 1994

[2] Lai-Man Po, Wing-Chung Ma: “A Novel Four-Step Search Algorithm for Fast Block Motion
Estimation”, IEEE Transactions On Circuits And Systems For Video Technology, Vol 6, No 3,
page 313-317, June 1996

[3] M Ghanbari: "The Cross-Search Algorithm for Motion Estimation"
IEEE Transactions On Communications, Vol. 38, no. 7, page 950–953, July 1990

[4] Jianhua Lu and Ming Liou: "A Simple and Efficient Search Algorithm for Block-Matching
Motion Estimation", IEEE Transactions On Circuits And Systems For Video Technology, Vol
7, No. 2, page 429-433, April 1997

[5] Renxiang Li, Bing Zeng, Ming l. Liou: "A New Three-Step Search Algorithm for Block Motion
estimation", IEEE Transactions On Circuits And Systems For Video Technology, Vol 4, No. 4,
page 438 – 442, August 1994

[6] Alexis M. Tourapis, Oscar C. Au, Ming L. Liou: “Fast Motion Estimation using Circular Zone
Search”, SPIE Vol. 3653, page 1496-1504

[7] Oscal T.-C. Chen: “Motion Estimation using One Dimensional Gradient Descent Search”
EEE Transactions On Circuits And Systems For Video Technology, Vol 10, No. 4, June 2000,
page 608-616

[8] Tae Gyoung Ahn, Yong Ho Moon, Jae Ho Kim: “An improved multilevel successive
elimination algorithm for full search estimation”, Proc. IEEE Conference on image processing,
(ICIP), Sept. 2003

