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1. Introduction

Comparing digitally stored video sequences and those “stored” on celluloid and considering the fact

that  data-storage  or  data-transmission  capacity  still  is  restricted  in  computer  technology,  this

comparison shows the necessity  of compressing the video-data: Using the same approach to store

videos digitally as they are in the classic way on celluloid would require at least 25 still images per

second. A high-quality 90 minute  movie with a resolution of 720*576 pixels and a 24-bit colour

depth per pixel could require of over 156 GB of storage capacity. Transmitting this amount of data

over  the  Internet is  impractical,  especially  when  real-time  performance  is  needed.  This

uncompressed video needs a transmission bandwidth of over 237 MBit/s. Similar problems occur

when storing the data to disc – only very few  memory devices have the necessary capacity.

MPEG-encoding uses - among other compressing techniques - block-based motion-compensation to

reduce  the  memory  requirements  of  video  files.   This  method  takes  advantage  of  temporal

redundancy between two or more frames.  Consider for example a video showing a car driving

across the image. The frames will all show the same car - only with a slightly changed position

between successive frames. Motion estimation tries to detect similar areas within two frames. It

calculates a motion vector describing the movement of these areas from one frame to the next.

Instead of storing nearly the same image data twice for these areas, it is only stored once and the

video decoder then moves the content of the image along the calculated motion vector.

This study presents a survey of various motion estimation algorithms. A Java applet was developed

which  illustrates  the  described  algorithms  with  a  step-by-step  explanation.  Additionally,  the

computational  complexity  and  matching  accuracy  are  measured,  which  enables  a  quantitative

algorithm comparison.
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2. What is motion estimation

2.1 The idea of Motion Estimation

When using motion estimation for compressing video data, this compression technique uses the fact

that usually not the whole image content changes from one frame of a video to the next, but only

regions. Often these regions do not disappear from the image, they just change their location within

the image - see Figure 1 and 2. With a fixed camera position, a scene like this will show a static

non-moving background with almost no changes, and an object – the boat – moving in front of this

background.  The  object  itself  also changes its appearance  only slightly  on its  way through the

scene. 

The idea of motion estimation is to detect all objects within an image, compute their motion and

represent  it  by motion vectors.  The advantage  of  this technique is,  that  the image data  for the

background and for the objects is  stored only in one frame -  the following frames contain the

motion vectors. A static background then is represented by a zero vector because it has not moved

whereas  the object movement is stored with non-zero motion vectors, pointing to the new locations

of the objects. If the camera position is not fixed, the static background also turns into a moving

object. 

As mentioned , the motion of semantic objects in videos should be represented by motion vectors.

The  problem is  to  detect  the  objects  and  to  find  their  exact  boundaries.  If  you take  a  car  for

example: is it a single object? Or do you distinguish between the tires and the chassis? And if you

do, what about the driver sitting in the car? It is very hard to define semantic objects automatically.

E.g. region growing algorithms only connect regions with similar colour or texture, neglecting the

semantic meaning. Typical problems here are scenes with ocean and sky. Since both may have a

similar colour. On the other hand, a mountain that is partly covered with snow will be divided into

several objects because rough stones and plain white regions do not look very similar. The same

Fig. 1 A boat cruising on a river and
a coastguard boat entering the scene.

Fig. 2 The coastguard boat has
moved towards the centre of the
frame. Though the camera is slightly
moving, consider the coastguard boat
as an object moving in front of an
(almost) static background.
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applies  to  trees:  why do  leaves  belong to  the  branch?  Optically  they do  not  have  anything in

common.  These few examples  show that  it  is  very difficult  – if  not  impossible  – to  recognize

semantic objects in an image the way the human brain does. Therefore other simple techniques have

been invented. MPEG2 uses block matching to relocate a region in another frame. This means that

each frame is decomposed into a raster of rectangular blocks. For each of them, motion estimation

algorithms try to find a motion vector pointing to its new position in the adjacent frame. Section 2.2

will have a closer look at how this is done. Each block is considered as an object. If many blocks

belong to the same semantic object of the scene, they will have the same or very similar motion

vectors.   While  not  being as coding efficient  as  an abject  based approach,  block based motion

compensation does not depend on a robust segment ion algorithm.

A  further  problem  is  that  the  motion  estimation

algorithms  do  not  work  properly  for  all  kinds  of

motion. We distinguish between translatory motion,

scaling and rotation ( Fig.  3).  A translation along

the x and y axes also leads to translational motion in

the  image,  while  a  translation  along the  z-axis  is

observed as a change of object size. 

Even  tough scaling  scaling  and  rotational  motion

cannot  be  represented  with  motion  vectors

accurately,  splitting  the  object  into  small  blocks

with independent motion vectors allows to approximate all kinds of motion.

Fig. 3 Different kinds of motion
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2.2 How blockmatching works

As explained  above,  MPEG2 encoders  use  block  matching  algorithms to  relocate  an  object  in

another frame. Therefore the image is segmented into a raster of rectangular blocks of 8 by 8 pixels.

Depending on the algorithm used for motion estimation, a block within a certain search range is

compared –  matched – with the source block. In the following, we assume that input images are

greyscale only.

Block  matching  uses  a  value  called  “block  distortion  measure”  -  BDM -  to  rate  the  similarity

between two blocks. The basic idea is to sum up the differences of the pixel luminances of pixels

located  at  the  same position  in  the  two blocks.  There  are  different  algorithms  to  perform this

calculation: 

Let ci(x,y) detect the luminance of pixel (x,y) in block i.

The „ Mean Squared Error“  (MSE) uses the sum of squared differences between the two luminance

values. The sum is divided by the quantity of the compared pixels to normalize the result:

diff = 1
n∗m

∗∑
y=0

m−1

∑
x=0

n−1

c1 x , y −c2 x , y 2

The  „Sum of  Absolute  Differences  “ (SAD) differs  only  slightly  by  using  absolute  differences

instead of squared differences:

diff = 1
n∗m

∗∑
y=0

m−1

∑
x=0

n−1

∣c1 x , y −c2 x , y ∣

It is not necessary to normalize the result in the end, since we only need the minimum cost block

position  and  not  the  absolute  cost  itself.  In  fact,  it  costs  an  extra  mathematical  operation  per

comparison.  However, in the applet, we used normalized costs to make the results independent of a

specific block size.

Usually, the motion estimation algorithms do not search a whole frame for the best matching block.

A search range defines a search area around the coordinates of the source block. It is necessary to

understand that the source block is from a frame A, and the search area as well as the resulting best

matching block is located in a frame B. Usually these are successive frames in a video. 

The most simple search algorithm, full search (section 3.1), to find the block with the lowest BDM

value within a specified search area, is to match the source block to every existing block in this
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area.  The  search-area  is a rectangular area around the source block. Its size, and therefore the

number contained search coordinates,  depends on the horizontal  search range rx  and the vertical

search range ry,: 

size of search area=2∗r x1∗2∗r y1

We will consider rx and ry always of the same size, therefore we will only use the value r. 

Matching  all  those  blocks  in  the  search  area  to  the  source  block  is  the  computationally  most

intensive algorithm: For a search range of 10 pixels and also a block size of 8 by 8 pixels, there are

2∗1012=441 blocks to be matched with 64 operations per block. In total, these are 28,2244

operations for each block. 

2.3 Approaches for reducing the computation complexity

As demonstrated in the last paragraph, a full search over the whole search area comes along with a

very high computation demand. Though this high demand only occurs  once when  encoding the

video, it is essential to reduce it, especially when real-time encoding is required.  

Very often objects just move horizontally or vertically or not at all. E.g. in a news broadcast, the

anchorman just sits or stands in front of the camera and hardly moves. In this case it would be

reasonable to start the block-matching  for each block at the same position the block had in the

previous frame.  Some of the algorithms in section 3 use this assumption of zero movement  to

increase  their  performance  (e.g.  Cross  Search  Algorithm,  New  Three  Step  Search).  Prior  to

searching somewhere else, they try to match the same coordinates again or the area close to it. 

Others assume a certain structure of the error surface, which is the surface representing the BDM

values over the search area, to locate the minimum. This minimum is the best matching block in the

search area. 

It is necessary to understand that these algorithms only find blocks that are  similar, respectively

have a low BDM value, to the source block. Very often, it would be impossible to find the exact

block again – e.g. due to changes of image brightness. The human eye is not that strict and accepts

small  blocks  which  look very  similar  to  the  original  block.  It  is  a  matter  of  choosing  a  good

threshold  value – which defines a block as similar or not – to achieve a good video quality and also

a short encoding time.
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3. The algorithms

In this section, often a grid is used to present a schematic overview of

the search area, as displayed in  Fig. 4. The centre of the grid is the

coordinate  (0,0).  Red  dots  highlight  the  search  coordinates,  the

respective  MEA  will  compare  with  the  source  block.  Each  grid

coordinate represents a distance of one pixel. If new search coordinates

are added to the grid,  the newer ones  are displayed larger  than  the

older ones.

3.1 Full search algorithms

This is a simple MEA that compares the source

block with the blocks at every position within the

search area. As mentioned above, the calculation

costs  of  this  algorithm  are  very  high,  but  it

guarantees  to  find  the  optimal  block  position

within the search range.

The number of  comparisons increases

quadratically (n2) with the search range:

The number of comparisons is: 2 r12∈O r2

Fig. 5: Full Search Algorithm
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Table 1 performance of full search

5 121
10 441
15 961
20 1681

search range 
r [pixel]

# compared 
blocks

Fig. 4 Grid, representing the
search area. Some search
coordinates are highlighted

Fig. 6 Performance of full search
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3.2 One-dimensional full search algorithm (1DFS) [1]

In contrast to the simple full search algorithm, which through the whole search area, the one-

dimensional full search approximates each coordinate in separate steps. Assuming increasing BDM

values if  the distance from the global minimum increases, some algorithms try to “follow” the

gradient downwards to that minimum. By doing this, there is a great risk in being trapped in a local

minimum. One dimension full search uses a different approach. Instead of following the gradients,

1DFS starts with searching the minimum for the row (x,0). It continues by searching the whole

column of the coordinate with the lowest BDM value. Then these two  search processes are

repeated with a reduced search range to improve the result. 

1.  Start with a search pattern of all coordinates (x,0) within the search area and find the

coordinate with the lowest BDM value.

2.  Continue by creating a new search pattern, consisting of all coordinates that are vertically

lined up with the current best matching position. Again search the block with the lowest BDM

value.

3.  Halve the search range. Proceed like in step 1, this time with the row of the current best

matching block.

4.  Step 2 is repeated with the reduced search range

Fig. 7 1DFS in step 3

step 1
min of step 1

step 2
step 3

min of step 2
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One-dimensional full search performs faster than simple full search. The number of compared

blocks just increases linearly when increasing the search range:

Number of performed comparisons: 2∗2 r12∗ 1
2

r1∈O r 

Table 2 performance of 1D
full search

5 36
10 64
15 96
20 124

search range 
[pixel]

# compared 
blocks

Fig. 8 Performance of 1DFS



 10/30

3.3 Three-step search algorithm (TSS) 

Another fast motion estimation algorithm is the the three-step search. Though powerful in itself,

some other algorithms base on TSS and add some enhancements,  e.g. NTSS (section 3.4), FSS

(section  3.5)  and  CSA  (section  3.6).  Like  some  other  algorithms,   e.g.  the  gradient  descent

algorithms  (section  3.7,  section  3.8),  TSS does  assumes  increasing  BDM values  the  more  the

distance to the minimum increases. Starting at the centre, TSS searches for the minimum BDM

value using 3x3 search patterns of decreasing size. Each step uses the the current best matching

coordinate as centre for its search pattern. 

Note: TSS, and all algorithms based on it, will be presented with a fixed search range. In some

papers,  e.g.  [3],  the  authors  use  a  variable  search  range,  others  like  [2]  use  a  fixed  one.  For

presentation purposes, a fixed search range is easier to understand. 

This is how TSS proceeds:

1. Create a search pattern consisting of 9 coordinates.  These are the

centre  of  the  search  area  (0,0)  and  the  8  coordinates  with  a

horizontal  and/or  vertical  distance  of  4  pixels  to  it.  Find  the

coordinate with the minimum BDM value (Figure 9).

2. Halve the search range to  to 2. Create a new search pattern with

the  eight  coordinates  surrounding  the  current  best  matching

coordinate. Again, find the coordinate with the minimum BDM. 

3. Reduce the  search range again  -  this  time to 1  pixel.  Create  a

search pattern  existing of  the eight  coordinates  surrounding the

current best matching position. Finally, search for the minimum

BDM. This is the coordinate the motion vector will point to.

Instead  of  a  global  monotonic  error  surface,  TSS  assumes  a  local

monotonic surface surrounding the occurring minima. Step by step TSS

approaches closer to what it thinks is a global minimum of the search

area. 

The number of compared blocks is always to 25.

Fig. 9 TSS in step 1

Fig. 11 TSS in step 3

Fig.  10 TSS in step 2
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3.4 New three-step search algorithm (NTSS)  [5]

The NTSS algorithm is a more centre biassed variant of TSS: in the first step the eight directly

adjacent blocks to the centre coordinate are added to the initial search pattern. Two extra features

are  introduced to  enhance  TSS.  “First-step-stop” will  abort  the search  if  after  having searched

through all initial coordinates, the minimum BDM is still the centre coordinate. “Half-way-stop”

aborts the search after step two: if the minimum BDM of  the initial 17 coordinates is located at one

of the eight coordinates directly surrounding the centre, finally the eight blocks surrounding this

coordinate  are  searched.  As  a  result,  NTSS performs  faster  with  stationary  or  quasi-stationary

blocks.

The algorithm in detail: 

1. Create  the  initial  search  pattern,  which  consists  of  the  centre

coordinate, the eight blocks surrounding it at a distance of  one

pixel  and  at  a  distance  of  four  pixels.  (Fig.  12)Search  the

minimum BDM of  this  pattern.  If  the  centre  coordinate  is  the

minimum BDM, the search is finished (first-step stop).

Otherwise: Go to step 2.

2. If  the minimum BDM is one of the eight direct neighbours of the

centre coordinate, add the eight direct neighbours of this block to

the search pattern and search it again for the minimum BDM. After that, the search is done.

Otherwise: Continue like TSS: add the four coordinates surrounding the minimum BDM like

an “X” at a distance of 2 pixels and search for the new minimum BDM.

3. Search the four coordinates surrounding the current minimum BDM like an “X” at a distance

of 1 pixel for the final minimum BDM.

NTSS  requires  17  comparisons  in  the  first-step-stop  condition,  aborts  the  search  after  25

comparisons for the half-way-stop, and 33 otherwise.

Fig. 12 Initial search pattern
of NTSS
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3.5 Four-step-search algorithm (FSS) [2]

This  algorithm is  also  based on the  TSS algorithm.  The intention  of  this  algorithm, which the

authors Po and Ma describe in [2], was creating an algorithm which achieves  better results than the

TSS algorithm while having a better worst case performance than the NTSS algorithm. The search

range of FSS is fixed to 7 pixels.

Summary of the algorithm:

 1) Create a 5x5 search pattern around the centre of the search

area, consisting of the nine coordinates surrounding the centre.

Find the minimum BDM of these coordinates. If the minimum

is located at the centre, proceed with step 4. 

Otherwise: Go to step 2

 2) The search pattern still has the size of 5x5. Depending on the

location  of  the  current  minimum  BDM,  new  search

coordinates are added to the pattern.

 a) If the current minimum BDM is located at the corner of the

pattern in step 1), add 5 additional coordinates located next

to the corner as shown in Figure 13.

 b)If the minimum BDM is located at the centre of a vertical

or  horizontal  axis  of  the  search  pattern  in  step  1),  add

coordinates to the pattern as shown in Figure 14.

Search  for  the  new minimum BDM.  If  its  position has  not

changed after this search, continue with step 4. 

 3)  Repeat step 2 once and proceed with step 4.

 4) The  search  window  size  is  reduced  to  3x3  around  the

minimum  BDM.  Search  all  eight  new  coordinates  in  this

pattern for the final minimum BDM.

The performance of the FSS algorithm varies from 17 (9+8) compared blocks, best case, to 27 (9 +

5 + 5 + 8) compared blocks, worst case. This performance is only slightly worse than the original

TSS algorithm with the possibility to perform equal or better  in average or best case scenarios.

Compared  with  the  NTSS algorithm,  FSS  performs  equal  with  “first-step  stop”  (17  compared

blocks),  which  is  the  best  case,  it  performs  equal  or  better  in  the  average  case  and  definitely

performs better in the worst case (NTSS: 33 compared blocks).

Fig. 13 Min. BDM value was
found at the corner of the pattern
- FSS adds additional search
coordinates surrounding that
corner

Fig. 14 Min. BDM value was
found at the centre of a
horizontal axis - FSS adds three
additional search coordinates
parallel to that axis
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3.6 Cross-search algorithm (CSA) [3]

CSA is also one of the algorithms based on TSS though there are some differences. First of all,

CSA uses a threshold-based first-step stop. This increases performance for videos or regions of a

frame with no motion or plain textures (like plain sky). It also has a reduced amount of initial search

coordinates  -  five  instead  of   nine.  These  are  the  centre-coordinate  and  the  four  coordinates

surrounding the centre like an “X” at a distance of 4 pixels. 

1. Match the search block to the centre block (0,0). If the BDM is

lower than the predefined threshold, stop the search. 

Otherwise: proceed with step 2.

2. Set search range r = 4

3. Add the coordinates surrounding the centre at the edges of an “X”

at a distance of r to the search pattern. Find the minimum BDM.

4. Halve the search range. 

5. If the search range is greater than one, go back to step 3.

Otherwise: If the actual minimum BDM position is equal to the

previous one or located top-right or low-left to it,  add the four

coordinates surrounding it like a Greek cross (“+”) to the pattern.

If it is located top-left or low-right to the previous,  add the four

coordinates, surrounding it like a St. Andrew's cross  (“X”) to the

pattern.

Search this pattern for the location of the final minimum BDM.

Cross  search  needs  just  one  comparison  if  the  bail-out  criteria  is  met.  Otherwise  it  needs  17

comparisons.

Fig. 15 Initial pattern of
CSA

Fig. 16 A new cross is set up
around the min. BDM
coordinate
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3.7 Gradient descent search algorithm (GDS)

The  GDS algorithm uses  another  assumption  to

perform fast motion estimation. Different from all

TSS-based  algorithms,  GDS  assumes  that  the

surface of the function, which represents the BDM

values  within  the  search  area,  contains  only  a

single minimum (Fig.  17). The idea is always to

follow the steepest gradient to find the way to the

absolute  minimum  BDM.  Therefore,  a  search

pattern consisting of the centre coordinate and the

eight direct neighbours are matched to the source

block.  Afterwards  this  step  is  repeated  with  the

minimum BDM coordinate from the previous step

as centre. This procedure is repeated until the new

minimum BDM value is equal or less than the one

from the previous step. A possible variation is that

the algorithm also stops searching if the minimum

BDM is lower than a certain threshold.

As  mentioned  above,  GDS  assumes  an  error

surface with just  a global  minimum. If  there are

also local minima, there is a great risk that the algorithm is being trapped in those. GDS can reach

the global minimum, but this may depend on the first search coordinate. Referring to Fig. 18, GDS

started at position 1 will be trapped in a local minimum. If the initial coordinate is at position 2,

GDS will find the global minimum.

The performance of GDS cannot be defined clearly because the number of performed comparisons

varies very much. The performance depends on the structure of the error surface.

Fig. 17 Error surface containing only a global
minimum. GDS will find the minimum

Fig.18 Error surface containing multiple local
minima and a global minimum. GDS may find the
global minimum 

1

2

Fig. 19 GDS starts with a
initial search pattern
containing only one
coordinate.

Fig. 20 GDS in step 2: The
eight coordinates
surrounding the previous
min. BDM value are added.

Fig. 21 GDS in step 4.
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3.8 One-dimensional gradient descent search (1DGDS) [7]

In [7], an improved GDS algorithm is described which reduces the main disadvantage of GDS, the

risk  of  being  trapped  in  local  minima.  Therefore  some  changes  have  been  made.  First  of  all,

1DGDS does not have one fixed starting coordinate for the

search – GDS always starts at the centre (0,0). 1DGDS uses

the up to four motion vectors of prior searches to find a better

starting  coordinate   (Figure  22).  In  addition  to  the  centre

coordinate,  the  coordinates  resulting  from  those  motion

vectors are tested for the one with the minimum BDM value.

The idea is to start the search closer to the global minimum.

This procedure is called initial-point determination and takes

advantage of the fact that very often the direction of motion is similar for blocks in the same region.

A further deviation from ordinary GDS is that the search is performed

in one direction at a time. Four directions are defined (Figure 23). Each

direction provides two new coordinates per search step. Only if the new

coordinates in one direction do not lead to decreasing BDM values, the

search  direction  is  changed.  Also  the  search  range  is  increased

compared  to  GDS.  While  GDS  only  checks  the  neighbouring

coordinates (search range of 1 pixel), 1DGDS makes two search runs,

the first one with a search range greater than 1 pixel. During the first

search run, the algorithm probably “jumps” over the small valleys of local minima due to its greater

search range. In the second run, a more precise search for the global minimum starts in the located

area with a search range of 1. The risk of being trapped in local minima is reduced.

Respecting  the  increase  in  performance  that  a  centre  biased  orientation  may  achieve,  1DGDS

algorithms stops, if after searching through two directions the coordinate with the minimum BDM

value is still  the initial  one. This reduces the minimum amount of comparisons in case that the

initial coordinate is the one with the minimum BDM value. 

The following paragraph will show how 1DGDS works in detail:

Fig. 22 The motion vectors of the four
neighbouring blocks are used to find a
better starting coordinate

Top left block Top block Top right block

Current 
processing block

Left block

Fig.  23 The four directions
of 1DGDS

II

II

I I

III

III IV

IV
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Let d=4 be the step size for the first search run.

1. Set search direction = 1 (Figure 23).

2. Match the source block to the coordinates, which the motion vectors of the neighbouring

blocks point to, as well as to the centre coordinate (0,0). The one with the lowest BDM value

will be the initial coordinate for the search and is the current processing point.

3. Add the two coordinates lined up with the current processing point at distance d in the search

direction.

4. Calculate the BDM value for the new coordinates. If the coordinates with the lowest BDM

value is one of the two new coordinates, this is the new current processing point. Repeat step

3.

Otherwise: If search direction = 2 and the coordinate with the minimum BDM is still the

initial coordinate, stop the search. The final motion vector then points to this coordinate.

If search direction < 4: increase search direction by 1. Repeat step 3.

If search direction ≥ 4: set search direction = 1. Set d=1.

5. Do the same thing as in step 3 but this time with d=1.

6. Calculate the BDM value for the new coordinates. If the coordinate  with the lowest BDM

value is one of the two new coordinates, this is the new current processing point. Repeat step

5.

Otherwise: If search direction < 4: increase search direction by 1. Repeat step 5.

If search direction ≥ 4:  The final motion vector points to the current processing point.

Since the proceeding of this algorithm is not very easy to understand, it is also illustrated as a flow

diagram in Figure 24 on the following page.

Again it is not  easy to determine what the performance of 1DGDS will be. The optional search for

a good initial search coordinate costs up to four comparisons. The bail-out-criteria may stop the

algorithm after another five comparisons. If  not, the final number  of compared blocks depends on

the image content and motion. 
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Fig. 24 Flow diagram of 1DGDS
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3.9 Circular-zone-search algorithm (CZS) [6]

While the previously presented algorithms only try to find a motion vector to a best matching block,

CZS goes  one  step  further.  Keeping  in  mind  that  data  reduction  is  the  main  target  of  motion

estimation, the design of CZS favours short motion vectors. The idea is that longer motion vectors,

e.g. those pointing to the edges of the search area, need more bits when encoded than short ones.

CZS searches circular zones around the centre of the search area,  beginning with the innermost

(Figure 25). A threshold value defines the desired minimum quality of the block to be searched, by

setting a minimum BDM value. The first block found which under-runs this threshold is the one the

final motion vector will point to, though there might be blocks with a lower BDM value within the

search area. Due to this behaviour, shorter motion vectors are preferred to longer ones. 

The setting of this threshold  also affects the performance of the algorithm and the quality of the

encoded video. A higher  threshold leads to  better  matching blocks but will  keep the algorithm

searching for a longer time, into the outer regions of the search area. 

Motion very often is  homogeneous for an area of the frame.  Its  direction very likely does not

change abruptly form one block to the next. Taking advantage of this fact, CZS starts by using the

motion vector,  MVpredicted,  of the previous block. A small area around the resulting coordinate is

searched for a good matching block. Again a threshold BDM value will decide whether a block is

good enough or not. 

Preferring short motion vectors  makes this algorithm clearly centre

biased.  Though  this  is  not  optimal  in  general,  a  centre-biased

algorithm has its advantages, e.g. in video-phoning or -conferences. In

those cases, mostly faces are filmed which very likely do not perform

sweeping movements. The best matching block usually will be found

near the centre of the search area. Focussing the search on this smaller

area leads to a better performance and a faster encoding time, which is

needed for real time encoding in video-phoning.

CZS builds up circular search zones around the centre (see Figure  25). The zones are constructed

using the following formula:

round MV h
2MV v

2=r−1

where MVh and MVv  are the distance of the currently examined block to the centre and “r” is the

corresponding zone. In order to describe the algorithm, the following symbols are used:

MVx motion vector

T1, T2, T3 predefined  threshold values. T2 < T3

M number of circular zones around the predicted coordinate 

Fig. 25 Definition of circular
zones around the centre.
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N number of circular zones around the centre of the search area. Usually M < N.

i counter for the circular zones

1. If the current source block is the first one examined in this frame, set MVpredicted to (0,0). Then

proceed with step 5.

Otherwise: Set MVpredicted to the motion vector of the previous block.

Circular search around predicted motion vector

2. Construct M circular zones around MVpredicted . Set i = 1.

3. Compute the BDM value for each block within the circular zone  i around  MVpredicted . 

4. If the minimum BDM found is less than T1 , proceed with step 10.

Otherwise: If i<M, set i = i+1 and go back to step 3. If not, proceed with step 5.

Circular search around (0,0)

5. Construct N circular zones around (0,0) in the search area. Set i=1 and LAST = false.

6. Compute the BDM value for each block within zone i around (0,0).

7. If the minimum BDM value found so far is less than T2 or LAST = true, proceed with step 10.

8. If the current minimum BDM is greater than T2 but less than T3, set LAST = true.

9. If i<N set i=i+1 and proceed with step 6.

Final step: Use MV found

10. The motion vector of the block with the minimum BDM value is chosen. 

The performance of CZS is hard to determine. Many factors affect the number of compared blocks:

The search range, which defines the size of search area, the number of circular zones around the

predicted motion vector (the M value) and the threshold values, which determine the moment when

the algorithm bails out of the search before reaching the last unsearched coordinate.

As mentioned above , this algorithm is highly specialized to encode videos with little motion, fast.

The authors point out that CZS works best with “lower bit rates, which are the bit rates of interest

for video conferencing” and that it “does not perform well in video sequences with large objects or

camera motion” ([6]).



 20/30

3.10 Successive elimination algorithms 

This work has presented only a few of the existing motion estimation algorithms and thereby has

focused  on  those  that  make heuristic  assumptions  to  reduce  the  number  comparisons.  Another

approach to increase performance is to optimize the “Full Search” algorithm. Though it has the

worst  performance  (see  section  3.11)  ,  the  quality  of  the  located  blocks still  is  the  best  of  all

presented algorithms. 

The idea is to find a quick test  to eliminate as many regions as possible from the search area.

Multilevel  successive  elimination  algorithms  like  [8]  take  this  approach.  They  aggregate  the

information of the single pixels  by summing up the colour values of

neighbouring pixels. For example, the colour values of the pixels of

2x2 square are summed up and are represented by a new field. These

fields  are aggregated again – that  is  what is  meant by “multilevel”

(Fig. 26). Each of these fields represents a greater number of fields on

the  level  below.  A  possible  starting  point  for  the  search  in  the

multilevel architecture may be using the motion vectors from adjacent,

previously searched blocks. This vector points to a region within the

search area which also is represented by an aggregated value on a higher level. At this point the

algorithm uses the “Schwartz Inequality” to eliminate regions from the search area. Referring to this

inequality, the aggregated value on a higher level can be equal or higher than the sum of single

values it represents on the levels below. It never can be lower. By this fact, the value resulting from

the first guess eliminates all regions with a higher aggregated value. It is necessary to understand

that this elimination will never affect a possible better matching block than the one found. This

procedure is repeated successively for the different levels. In the end only a few blocks “survive”

the elimination process and are matched. The number of compared blocks is drastically reduced

though a full search is performed.

Fig. 26 Pyramid, representing
the multiple aggregation-levels
for the BDM values in
successive elimination
algorithms
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3.11 Evaluation of computational complexity

This paragraph presents an overview of how the different algorithms perform with the example

frames from the applet. When possible, a search range of ten pixels is chosen, and if a threshold

value is needed, it is set to 12. 

The algorithms have been tested with frames of the video sequences “Stefan” and “Coastguard”. In

the “Stefan” sequence the search ranges for some regions are to small to find similar blocks. This is

a result of the fast movement of the person in the scene, and 5 missing frames between the two

presented. Those frames have been left out for presentation reasons. The higher average BDM

values lead to a generally lower performance in the comparison. As a result, all algorithms have a

better performance in the “Coastguard” sequence.

It  is  not  possible to compare all  algorithms under the same conditions.  Most  of the TSS-based

algorithms have a fixed search range, others have variable search ranges. Even the fixed search

ranges differ. For some algorithms, the search range is of great importance, other algorithms depend

more on a threshold value. If the threshold value in FTS is set to a high value, e.g. 50 or higher, the

search will stop almost immediately,but if

set  to zero,  it will  run through all  search

coordinates  -  which  is  the  worst  case

scenario.  This is  also a  difference  of  the

algorithms:  running  through  all

coordinates  may  be  common  for  some

algorithms, for others it is the worst case.

In spite of these differences, the algorithms

perform nearly comparable tasks. The data

of table 3 and 4 gives an overview on how

well each of them performs.

Searching  for  a  value  representing  both

variables, the average quality of the results

and  the  average  number  of  compared

blocks I chose one based on the product of

quality and performance. The optimum is

a minimum of both variables – the more

the  value  of  each variable  increases,  the

worse  the  general  performance  of  the

algorithm becomes. 

Table 3 Sequence: Stefan
(1) search range = 7 pixel
(2) search range = 8 pixel

Algorithm

Full Search 17.6230 441 338,688
1DFS 18.6982 61 47,044

19.9489 27 20,736

19.9739 30 23,802

20.6595 22 17,188
GDS 21.1903 31 24,133
1DGDS 19.7601 19 15,604
CSA 2 20.4977 14 11,368
CZS 18.4462 238 183,002

Avg. min. 
BDM

Avg. # 
comparisons 

per block 

Total # of 
compared 

blocks

TSS 1

NTSS 1

FSS 1

Table 4 Sequence: Coastguard
(1) search range = 7 pixel
(2) search range = 8 pixel

Algorithm

Full Search 8.4202 441 432,180
1DFS 8.7377 60 59,695

12.5873 27 26,460

12.1617 30 29,710

11.9091 21 21,257
GDS 11.6735 28 27,986
1DGDS 9.8181 18 18,141

12.4502 12 11,960
CZS 10.4940 151 18,141

Avg. min. 
BDM

Avg. # 
comparisons 

per block 

Total # of 
compared 

blocks

TSS 1

NTSS 1

FSS 1

CSA 2
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Due to the different search ranges of some algorithms,  the size of the search areas differs and

therefore the average number of searched blocks may be affected. To get comparable values, the

number of compared blocks has to be normalized. This is done by dividing it by the total amount of

blocks within the search area. The resulting value represents the percentage of blocks compared of

the search area.

The average BDM value is normalised by dividing it by 255 – the maximum BDM value. This only

is done to get a fully normalized indicator with a maximum value of 100. This is the formula of the

indicator:

i=BDM
255

∗ c

2∗s12
∗100

where:

bdm =  the average BDM value
c = the average number of compared blocks
s = the search range

 

See Figure 27 for the resulting performance indicators of the algorithms for the image sets of the
applet. 

The 1DGDS algorithm and CSA perform best for these two examples. Full search has a really bad

performance. The costs for finding the best average BDM value do not pay off in comparison with

the other algorithms. The CZS algorithm also has a bad performance. As mentioned in 3.9 it was

designed to perform fast in video-conferencing situations with average slow object movement.

Referring to the results of the comparison, using heuristic assumptions to increase performance of

Fig. 27 Performance indicator for MEAs
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motion estimation algorithms pays off. Using the results from full search as a reference, the average

BDM values of the other algorithms mostly are only slightly worse though the number of compared

blocks is reduced enormously. Though the performance indicator presents “Cross Search” as the

best algorithm - the example of CZS shows that there is not one best algorithm, it depends on the

kind of video which algorithm performs best.
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4. The Java applet

The Java applet  belonging to this  work is  written  with  the  JDK 1.4.1 from  Sun Microsystems

(http://java.sun.com). Required for the execution of the applet is the JDK 1.3.x.

The applet  presents the proceedings of the algorithms in two different modi: “step by step” or  “all

at once”. Two sets of images from videos, each consisting of two frames, support the presentation.

The applet  starts  when visiting the designated URL and will  display a welcome window while

loading. Please make sure that one of the recommended JDKs or SDKs is installed and that your

browser has the right to execute Java programs. 

After the loading procedure the main window will appear (Figure  28). In the top left corner,  the

first frame of the current image set id displayed. The number of the frame is written on it. Switch

between the two frames by left-clicking on the image

to.  The  different  tabs  will  provide  more  detailed

information  of  the  comparisons  when  all  required

settings  are  done.  In  the  beginning,  only  the  main

window tab will be activated.

On the right, a text area is displayed. Explanations to

the algorithm or hints for the settings will be provided

here, depending on the selected mode, algorithm and

the current step. Open the algorithms menu and select the algorithm of your choice. (Figure 29) 

Changing the algorithm,  the selected mode or the image set can only be done before pressing the

“Start” button or after the selected mode has finished. A mode can always be stopped by pressing

Fig.  29 The algorithms menu

Fig. 28 The main window

explenation
texts

tabs

control panel

menu

frames
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the “Cancel” button.

4.1 “Step-by-step” mode 

Select the “step-by-step” mode from the mode menu. This mode will guide you through the settings

that need to be done for this algorithm and will show the ongoing search for the block with the

minimum BDM in detail. The user will get a good impression of how the single algorithm works.

At the same time detailed information is provided in the text area. 

4.1.1. Displaying the motion 

Press the “Start” button to begin the presentation of the selected algorithm. At first, the program

will propose to click on the frame presented to switch between the two frames of the selected image

set. This provides a good impression of what motion takes place from one frame to the next. This is

what the algorithms have to calculate with their different search strategies. 

4.1.2. Selecting the search block

The next step orders the user to select a block within frame 1, which the algorithm should try to

relocate.  The selection is done by simply clicking on the frame in the upper left  corner. A red

rectangle will mark the selection. 

4.1.3. Setting the search range 

The  following  step  may  ask  the  user  to  select  a  search  range.

Therefore frame two is  presented in the upper  left  corner. A red

cross  appears  in  the  frame.  The coordinates  of  the  cross  are  the

same as those of the upper left corner of the selected block in the

previous frame though it may mark a different content in the frame

now. This is because the the region marked in frame 1 may have

moved in frame 2. Move the mouse over the frame while keeping

the left mouse button pressed to drag a rectangle around the selection which marks the search area.

The selected search range will be displayed. Not all algorithms have an adjustable search range.

When one of these algorithms is selected, the step is skipped.

Fig. 30 set the search range by
dragging the mouse
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4.1.4. Setting a threshold value 

In the next step, a threshold value has to be set. Some algorithms need such a value to stop the

search before having compared all  designated coordinates.  Usually this is some sort of bail-out

criteria to reduce the search costs. The lower the threshold value is, the more unlikely it is that the

BDM value found is lower than the threshold. The maximum value is 255, which would e.g. be a

totally white block if you are searching a totally black one. The minimum value is 0, e.g. if the

algorithm finds exactly the block it searches for. Blocks that look very similar have a BDM value of

up to 15. A value of 50 is bad already. Use the slider appearing in the lower left corner to set a

threshold value of your choice. If the selected algorithm does not require a threshold value, this step

is skipped.

4.1.5. Presentation of the algorithm 

With this step the “Diff image” tab and the

“Statistics” tab are activated. The  program

automatically switches to the “Diff image”

tab. Also a raster appears in the lower left corner. In the control panel, the “Next” button is disabled

temporarily and three new ones are activated: 

“>”  Forward button - Press this button to perform the next comparison 

“>>” Fast forward button -  Press this button to perform the next ten comparisons 

“>|” perform-all-button -  Press this button to perform all comparisons 

The grid (Figure  32) presents a schematic overview over

the  search  area.  Each  grey  dot  represents  a  coordinate

within the search area and by that the upper left corner of

every possible block to be searched. The red dots represent

the blocks designated to be matched to the source block by

the algorithm. A black cross marks the position that have

already  been  searched.  The  current  search  position  is

marked by the green dot, the yellow dot marks the block

with the minimum BDM value so far. Sometimes the initial

set  of  search  coordinates  is  extended  by  new ones  after

some performed comparisons. This will also be displayed

in this raster.

The “Diff  Images” tab displays a zoomed  region of one of the original frame, showing the search

area to present a better overview over the ongoing comparisons.  A red rectangle will  show the

Fig.  31 The control panel with activated forward-, fast-
forward- and perform-all-button

Fig. 32 The grid displaying the new three-
step-search
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current search position while a yellow rectangle will mark the block with the minimum BDM value

so far. The costs for the last performed comparison, which is the BDM value, is displayed below

this image. Beneath, the source block which has been

selected in step 2 is displayed together with the current

search  block  and  a  difference  image.  The  difference

image displays the differences of  the colour value  of

each pixel of the source block and the current search

block., e.g. regarding the pixels at coordinate  (0,3) in

the  two  blocks.  The  pixel  in  the  source  at  this

coordinate  block  has  a  value  of   225  (a  light  grey,

nearly white) and the one in the current search block a

value of 200 (a somewhat darker grey). The difference value is 25. The pixel at coordinate (0,3) in

the difference image will have the value of 25, which is a very dark grey. The darker the pixels of

the difference image are, the more equal are the two blocks .

The “Statistics” tab provides more data about the search:

search range: the selected or predefined search range 

No. of compared blocks: total of compared blocks so far

Avg. no. of compared blocks: only activated in the “all-at-once” mode

min costs occurred: the minimum BDM value so far

max costs occurred: the maximum BDM value so far

current optimal position: the coordinates of the block with minimum BDM value found

Mean distance :  only activated in the “all-at-once” mode 

Use the buttons of the control panel to perform the search. The next button will  be reactivated

automatically after the last coordinate has been searched.

4.1.6. The result 

The  last  step  presents  the  result  of  the  search.  The  program  automatically

switches to the “Main image” tab while the other two tabs remain activated. In

the frame the selected source block is marked again by a rectangle as well as the

block with the lowest BDM value. By clicking on the frame you can still switch

between the two frames of the set. As your selected block is located in frame

one, the block with the minimum BDM value is  in frame two, so the block

located in the displayed frame is marked with a red rectangle and the one in the

other frame is marked black. A red line represents the motion vector which the

algorithm has calculated. This is the vector that is stored in the MPEG-2 file for

Fig. 33 the "Diff image" tab

Fig. 34 A red
rectangle marks the
block located in the
displayed frame, a
black rectangle
marks the
coordinate of the
other block in the
second frame. The
red line is the
resulting motion
vector
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the source block when encoding the video. 

4.2 “All-at-once” mode

This mode was designed to present the work of the algorithms on a whole frame instead of a single

block like in the “step-by-step” mode.  It  is  less detailed in its  description but  presents a better

overview of  the results. For each block in frame 1 a best matching block in frame two is searched.

A good video encoder may possibly not store each block as a motion vector with regards to the

video quality  if  the BDM value of the resulting block is  too bad.  The “all-at-once” mode was

programmed regardless of this option. 

4.2.1. The settings

As explained  before  some algorithms  need  the

setting of  a search range. The selected algorithm

will  try  to  relocate  each block  within  a  search

area  resulting  from  this  range.  Also  some

algorithms stop  the  search if  they find  a  block

with a BDM value lower than a certain threshold.

These  two  values,  the  search  range  and  the

threshold can be set in the lower left corner with

the two sliders. If the selected algorithm has no

variable search range or threshold value,  the corresponding slider will be deactivated. Press the

“Next” button to start the algorithm. Be aware that, depending on the selected algorithm and the

processor power of your computer, this action may take up to a few minutes. 

 

4.2.2.The results

The results of the search will be presented as motion

vectors in the frame in the upper left  corner.  Each

block  of  the  image  now  has  a  motion  vector,

represented by a red line, which points to the location

where the best matching block within the search area

has  been  found.  If  there  is  no  motion  vector  is

displayed for a block, this block has been relocated at

the initial coordinate (0,0), which means it has not moved. 

The “Statistics” tab is also activated. It provides more data about the search: 

Fig. 35Set the search range and the threshold value
for the algorithm

Fig. 36 The resulting motion vectors are displayed
in the frame
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search range: the selected or predefined search range 

No. of compared blocks: total of compared blocks so far (for all blocks)

Avg. no. of compared blocks: the average number of searched coordinates per block 

min costs occurred: the absolute minimum BDM value 

max costs occurred: the absolute maximum BDM value

current optimal position:  only activated in the “step-by-step” mode 

Mean distance : the average minimum BDM value found per block 

4.3 Image set selection

Before starting the selected algorithm or after finishing it, the set of

images can be changed. Select this option from the file menu. A new

window will appear which offers different image sets. Select one of

the sets and press “Ok”.

Fig. 37 Selecting another
image set
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5. Index

CSA Cross search algorithm

CZS Circular zone search algorithm

FSS Four step search algorithm

GDS Gradient descent search algorithm

MPEG Motion picture experts group

MPEG2 A video compression standard, defined by MPEG

MSE

NTSS New three step search algorithm

SAD

TSS Three step search algorithm

Mean squared error - a method of caluclating the distance of two values. 
For a better comparison with other values, the result is squared, so only 
positive results occur. -> SAD

Sum of absolute differences - a method of caluclating the distance of two 
values. For a better comparison with other values, the result is the absolute 
difference, so only positive results occur. -> MSE
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