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Abstract—This work discusses a distributed interactive video
system that supports video annotation using simultaneous hyper-
linking by multiple users. The users mark and annotate objects
within the video with links to other media such as text, images,
websites, or other videos. Annotations are visualized on the client
user interface as an overlay close to the objects. Our system is
intuitive to use; for example, it contains automatic object-tracking
functionality that correctly positions the annotations, even when
the form or location of an object changes. Thus, our first
contribution discusses the adaptive object-tracking algorithm
used for this repositioning. It shows improved precision and
reliability in comparison to non-adaptive algorithms. A second
key issue is to keep the system responsive when the number of
concurrent annotators increases. Thus, we rely on the concept
of eventual consistency between different network entities. While
this weak form of consistency allows temporary inconsistencies,
it ensures that a consistent state can be reached. Thus, the second
contribution is the design and evaluation of our distributed
interactive video system, which relies on the weak consistency
paradigm.
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I. INTRODUCTION

For users of Video Sharing Sites (VSSs) like YouTube,

annotations - more commonly known as comments or likes

- are an important mean for expressing opinions and feelings.

Yet, most annotation types are linked to an entire clip, which

is more suitable for a still image than a video. This motivated

us to rethink video annotation by developing a fine-grained

interaction with objects that appear in a video. Therefore, we

leverage the idea of a hypervideo, which links visual objects

in a video to related media, e.g. text or images.

Our use case for such a system is the co-editing of video in

an eLearning scenario. The video is perceived as an extensible

document, such as a Wikipedia page, and a large number of

users can add links to visual objects. The annotations linked

to these video objects are accessible for users as an overlay on

the user interface. We have shown in [1] that such a system

improved the learning outcomes when hyperlinked videos

were used. Co-editing video annotations in the eLearning

scenario resulted in a need for a highly scalable system, as we

aimed for hundreds of concurrent users, as well as an intuitive-
to-use system, in order to enable arbitrary users to contribute

annotations to the video. Regarding the intuitive usage of

the system, users can access annotations by interacting with

the objects in the video by pointing at an object (e.g. a

mouse click). The annotations are visualized as an overlay

to the digital video, as so-called interactive hotspots, and are

stored independent of the digital video. In order to visualize

interactive hotspots in relation to the video object, our system

requires an annotation repositioning according to the move-

ment and deformations of objects over the course of the video

playback. To reduce the manual effort, an automatic object

tracking algorithm is integrated into servers of our system.

When an object within a video is marked by a user for the

first time, automatic tracking ensures that annotations linked to

that object are positioned and scaled according to the position

and deformations of the object over the course of a video. This

positioning affects the x- and y-coordinates of the associated

interactive hotspot over different video frames. This approach

does not require any manual intervention of a user. Yet, at any

point in time users may adjust tracking results. Thus, our first

contribution describes the automatic and adaptive tracking of

objects in a video. Since requirements for tracking can usually

not be fulfilled by a single algorithm with high reliability, we

propose an adaptive selection of object-tracking algorithms.

The result of this contribution is that our system simplifies

the complex task of annotating a moving object in a video

into a simple image-tagging task. As a result, automatic object

tracking reduces the time required for annotating and allows

users to focus on embedding new content.

Besides intuitive usage, scalability in our system is a chal-

lenge due to massive interactions with video objects by a large

number of concurrent users. The system also needs to remain

responsive to user interactions. A single server would not be

capable to process video object tracking upon the requests of

hundreds or thousands of concurrent users. Furthermore, as

the system allows the parallel editing of interactive videos,

the synchronization of those edits may result in classical,

strong consistency approaches, i.e., locking objects for an

exclusive access. We decided to use cloud capabilities to

adapt the number of servers executing object tracking and

managing users in relation to the number of active users in

the system. The server functionality is distributed to many

server instances, and each server manages a subset of the

users. Yet, despite its distributed design, the system reacts

to user interactions as if a local application is used, and a

user is able to edit any video object at any time. As both

concurrently created annotations as well as object tracking
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descriptors are represented using the MPEG-7 standard, large

media files and huge processing capabilities are required. A

strong form of consistency in combination with a massively

distributed server setup, in combination with the need for a

responsive system without data locks, is thus not possible with

commonly available cloud instances or retail server hardware.

Thus, our second innovation is a solution to the problem of

consistency of the replicated data in a scalable manner. The

data copies in our system, i.e., user annotations and video

object tracking features, are changed very often - but not

immediately synchronized. Yet, all copies in the system are

guaranteed to converge to the same values after updating

ceases, which leads to eventual consistency. In this work,

while we demonstrate and evaluate system use by several

hundred users, these concepts can be mapped to thousands

of concurrent users.

II. BACKGROUND AND RELATED WORK

A. Interactive Video

In today’s VSSs, interaction with videos is mostly limited

to annotating an entire video with a rating or a comment.

Guimaraes et al. [2] proposed to extend this functionality by

describing how to personalize comments on user-generated

video. In another work of Guimaraes et al. [3], the idea of

annotating videos from heterogeneous sources by captions is

described. Thus, Guimaraes et al. describe creating dynamic

annotations in videos and using them to link videos to each

other. In contrast to their work, we explain how objects in

a video can be made accessible, and how related media can

be linked to those objects. Thus, annotations must adapt to

object positions in different video frames. In addition, we

investigate weak consistency to ensure scalability and the

system responsiveness to users’ interactions.

Cesar et al. [4] developed a video system that focuses

on social interaction during media production. The authors

designed, developed, and evaluated this media sharing system

that allows video annotation and sending recommendations

to users. The proposed work does not focus on improving

usability by applying an automatic object tracking algorithm

or investigating scalability issues. The Raconteur system [5]

combines social media and chatting, thus allowing users to

interact with each other. Videos can be integrated at any time

during the chat. General requirements for systems that com-

bine digital video with social interactions on mobile devices

are described by Juhlin et al. [6]. All of these approaches show

communication, e.g., via chat, and how such communication

should be designed. These findings are used and extended in

our system, as we allow annotating video objects with chat

topics.

As a basis for integrating interactivity with video objects,

we leverage the concept of hypervideo. A hypervideo is

interpreted in HyperCafe [7] as an opportunity for users to

decide which direction a storyline should take. It implements

a fixed, authored setting in a coffee store and allows users

to listen to different conversations. The concept of detail-on-

demand (e.g., in the Hyper-Hitchcock system Hyper-Hitchcock

system [8]) tries to reduce the negative effect of disorientation

a user might experience. It restricts the amount of information

by allowing only one link for a video at a time. Bulterman’s

annotation tool [9] describes pen-based video editing. His

aim is to construct a testbed for exploring the possibilities

of user-generated annotations. If the underlying object of an

annotation is moving, users can manually embed an animation

path. The SIVA Producer/Suite [10], [11] offers a rich set for

producing interactive, non-linear, and hyperlinked videos. It

focuses on the user interface design, and proposes opportuni-

ties for intuitively authoring videos.

The Interactive Shared Educational Environment [12] com-

bines active reading with video and takes the first step towards

collaborative video consumption, allowing users to interact

with each other. ToolClips [13] implements and validates the

concept of videos supporting the learning processes better

than text and that they help users understand program func-

tionalities much better. StoriSphere [14] is building a user-

centric video-sharing platform, which allows one to combine

professional broadcasts with user-generated video. StoriSphere

includes automatic content analysis methods for shot detection

as well as title and description generation.

These existing systems lack at least one of the following

features, not allowing users to:

• annotate objects in a video and add their own ideas,

• reduce the manual effort of users by an automatic tracking

of objects,

• scale to large user communities by implementing a weak

consistency level for copies of the videos and their

annotations.

To the best of our knowledge, this is the first successful

attempt to combine those features in one system.

B. Automatic Object Tracking

A major advancement of our system is the integration of

an adaptive automatic object tracking method. To understand

design decisions for our object tracking algorithm, we follow

the classification of object tracking steps by Yilmaz et al. and

Li et al. [15], [16]. They classify steps in an object tracking

algorithm into: object representation selection, feature selec-

tion, an initial object detection step, and tracking an object

throughout all frames of a video sequence. Designers of object

tracking algorithms have to decide on a representation of a

trackable object in one of three ways: in a shape model (e.g.,

point clouds, primitive geometric shapes, skeletal models), the

object’s contour, or the appearance of an object within a frame,

which includes templates or probability models of an object

appearance [15]. From the object representation, features for

the tracking process can be derived, such as colors, object’s

edges, optical flow, or texture [15], [16]. In our system, the

initial object marking is performed manually by the user.

The tracking step includes point-based, as well as kernel-

based, tracking methods. Point-based tracking methods lever-

age specific information on pixel positions and movements

between adjacent frames solely on pixel attributes. Kernel-



based tracking leverages the object shape and appearance, e.g.,

the rectangular shape of the template and a feature histogram.

Object tracking algorithms that facilitate manual template

selection was proposed by Weng et al. [17]. Similar to our

algorithm, they have to cope with uncertainty as to whether

the template selected by a user includes a suitable object

representation. It is an adaptive approach, feeding results from

already analyzed frames into their feature model. Our approach

leverages similar ideas - such as using color as a feature to

track moving objects within one video shot - however, we use

different features to compensate for massive deformations and

illumination changes.

Similar to our goal of designing a reliable tracking ap-

proach for hyperlinked videos, Goldman et al. [18] designed a

particle-tracking approach similar to that proposed by Sand

et al. [19]. Particle tracking is designed to generate long-

range tracking results like other feature tracking algorithms

– and offer the possibility of being spatially dense, to be

capable of tracking small objects. We investigate an adaptive

selection of object features and object tracking algorithms,

depending on the investigated video sequence and the selected

video object. Features include a template’s color features,

optical flow features, or feature descriptors that leverage

illumination differences. The resulting tracking algorithms use

the MeanShift algorithm [20], template-based matching, and

SURF features [21] combined with the Kanade-Lucas optical

flow tracker [22]. These algorithms were chosen due to their

ability to perform well in distributed environments with limited

resources. The idea of MeanShift color-based clustering [20]

is to identify areas in a frame with characteristic colors. It is a

kernel-based tracking algorithm that leverages color features.

Depending on the color distribution of the searched object, the

algorithm sets hypothesized clusters in the frame. The cluster

centers are iteratively shifted to the mean of the data in a

cluster until no more changes are detected.

Our template-based tracking leverages both brute-force

color comparisons and pixel intensity values in the anno-

tated object region with the pixel values in the video frame.

For tracking purposes, this is repeated for consecutive video

frames. Template-based matching is a brute-force approach

that compares color or intensity values between a template and

a series of consecutive frames. Speeded Up Robust Feature
(SURF) [21] is a fast method for detecting and extracting

feature descriptors that are robust to scaling and rotation. Addi-

tionally, as described by Li et al. [16], it is robust against small

occlusions, illumination changes, and shape deformations.

Feature correspondences are defined as the nearest neighbors

between the features of a template and an arbitrary frame. The

Kanade-Lucas tracker [22] calculates pixel displacements of

consecutive frames on the basis of motion vector fields, which

compensates for feature loss.

C. Consistency

For large-scale distributed systems – such as our distributed,

interactive video system – ensuring the CAP (Consistency,

Availability, and Partition Tolerance) theorem may limit sys-

tem performance. Thus, only two of the three desired proper-

ties can be achieved at the same time [23].

With eventual consistency, data is not necessarily saved

consistently on any network entity at any given time [24]. It

is a special form of weak consistency, which guarantees that

all changes will be synchronized to the same value across all

copies if no updates occur from that point forward [24]. Such

an eventually consistent system allows inconsistencies at any

point in time.

The idea of eventual consistency has evolved into various

forms and levels of weak consistency. An overview on dif-

ferent consistency levels is given by Saito et al. [25]. We

focus on read-your-writes-consistency. Without occurrence of

an error, the network entity performing the change will never

retrieve an outdated value from its own site, but the data is

not necessarily shared instantaneously between the remaining

network entities. Ballis et al. [26] describes that, in most

situations, eventual consistent systems behave quite similar

to strong consistent systems. Only massively parallel access

to those systems reduces the consistency in practice. Different

database systems relying on the eventual consistency paradigm

have been introduced including Cassandra and DeeDS [27].

The downside of the system architecture and the scale of

distribution, an inconsistency usually requires between 200

milliseconds (Cassandra) [28] and 13 seconds to be resolved

(Amazon S3) [29].

The DIMA (Distributed Interactive Multimedia Applica-

tions) system proposes consistency analysis for distributed

multimedia applications [30]. Bouajjani et al. [31] present a

similar formal verification scheme for different consistency

levels including weak forms. Thus, both Bouillot et al. and

Bouajjani et al. developed a generic algorithmic verification

method for different application schemes. A methodology for

validating the temporal consistency of pre-designed, interac-

tive multimedia flows was given by Mirbel et al. [32], who

used a description language to illustrate inconsistencies. How-

ever, they do not offer a solution for implementing weak or

strong consistency. The necessity of integrating management

of weak consistency into programming languages is discussed

by Burckhardt et al. [33]. They introduce new data types for

cloud programming that enable eventual consistency-secure

addressing of data items. In contrast to the work of Bouajjani

et al. Burckhardt et al., Buillot et al., and Mirbel et al., we

present an application of the eventual consistency paradigm

to a collaborative video system. Thus, our application benefits

from good practices that have been recommended regarding

the programing eventual consistent applications

The aim of our system is to enable many concurrent users

to collaboratively enrich videos with annotations that link to

related media. In comparison to many previous hypervideo

systems, the proposed system allows users to interact with

every object visible in a video. For our system, we assume

that consistency is continuously broken and eventually reestab-

lished, as classical consistency paradigms cannot ensure the

desired system response times.
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Fig. 1. Overview of the interactive video system’s user interface. A user can create an annotation by drawing a rectangular, interactive hotspot on (a) one
video object (in this case, a goat) and (b) multiple video objects (two goats) when the user wants to annotate a group of objects.

III. SYSTEM OVERVIEW

A. Requirements and Design Overview

Our aim is to design a distributed, interactive video system

that scales well with the number of concurrent users by

leveraging the concept of eventual consistency. The resulting

requirements were then tested in an eLearning scenario. Our

system is used to annotate videos by linking objects to addi-

tional media that ease the viewer’s understanding of concepts

discussed in the video. Users can thus easily enrich the video,

but they can also navigate using links in the video if they

are specifically interested in understanding more about the

discussed topics. This results in a constantly growing video

document; a close parallel is an online encyclopedia such

as Wikipedia, where each user can contribute to an existing

knowledge base.

To achieve our goal, we address five requirements that our

system should fulfill:

1. Interactive video: Users should be able to interact with

distinct video objects and access available annotations, thus

personalize their video consumption and learning experience.

To show users which objects contain annotations, the concept

of an interactive hotspot is used. An interactive hotspot is a

visual overlay to an annotated video object. A transparent,

rectangular area is visualized to the user (see Figure 1) which

positions the area according to the video object’s movements.

Furthermore, it is sensitive to interactions, e.g., a mouse click.

2. Collaborative annotation: Each user shall be able to

easily annotate video objects with other media. Those an-

notations are propagated to all users to allow them to add

their own media links as soon as possible. Due to the concept

of eventual consistency, no precise deadline can be set when

annotations are available for all users. Thus, no locks are set on

the annotated video objects; these annotations can be modified

by any user, at any time.

3. Automatic object tracking: An interactive hotspot, once

created, is positioned and scaled according to the underlying

video object. Automatic tracking compensates for the video

object’s movement, scaling, deformation, or occlusion. A mea-

sure of this requirement’s success is the correct localization of

objects in different video frames (see Section VI-B).

4. Scalability: The system supports sessions of a single

user as well as many concurrent users. The concepts of this

work shall be valid for thousands of concurrent users. For our

prototypical evaluation in this work we aimed for two hundred

users

5. Responsiveness: When a user interacts with the

system’s user interface, quick system feedback is desirable.

Independent of the number of concurrent users, the system

has to be responsive to each user interaction. Furthermore,

the user should always be able to access any annotation in

the system without any locks, even when they are currently

edited by other users.

Requirements 1 and 2 are extensively discussed in our

previous work [1], [34]. Requirements 3-5 include the high

resource demands of an automatic object tracking requirement,

the need for scalability, e.g., by using capabilities of a dy-

namically growing set of servers, and the necessity of having

instant feedback for user interaction resulting in a distributed

system design. In other words, we distribute the functionality

over several network entities – namely clients, bootstrapping

servers, and support servers. The bootstrap server offers to

the user information for running the client side of the system,

and assigns the user to a support server, where automatic

object tracking is executed and sessions are managed. This
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Fig. 2. In (a), additional information linked to the video object is shown. Two different information node types (b) are then shown: the hypertext and the
video node.

session management includes the administration and conflict

resolution of annotations for each of the assigned users. Clients
implement the user interface and decode the video elements

for presentation. In our system, co-editing video documents

between clients requires that annotations are synchronized

across network entities. Video co-creation or co-editing occurs

when users of our eLearning platform want to enrich the video

by annotations, e.g., if several users during a broadcast of a

lecture were discussing topics in a chat or adding notes to

video objects. The automatic object tracking approach then

reduces the effort of the annotation process by allowing a user

to mark an object in a video only once. The system will then

take care of the video object’s scaling or movement during the

course of the video. No additional user interaction is needed

to position an interactive hotspot according to the movements

and scaling of a video object. Direct user interactions and an

automatic object-tracking approach result in a large amount

of data to be synchronized. A design choice arises whether to

ensure strong consistency or a responsive system. We decided

to relax the consistency level to ensure a responsive system

(see Section V).

B. Interactive Video Client

The interactive video system is Web-based, implying that

communication between the clients and servers is realized

using the hypertext transfer protocol (HTTP). This Web-based

design allows easy integration into Facebook, our prototyping

and evaluation environment. The system relies on annotating

objects and accessing annotations from objects in a video.

In contrast to static text or images, the dynamics of a video

and its sequence of images is a challenge for accessing or

enriching information. It is a special technical challenge

to annotate and access video objects because they appear,

change shape or size, move, or disappear during the playback

of the video.

Interacting with Video Objects
As explained above, our system illustrates to users which

video objects are available for interaction using the concept

of interactive hotspots.

The client software uses interactive hotspots to determine

which pixels in a frame are associated with an annotated

object. Video objects can be linked with additional media

elements called information nodes. Information nodes can be

images, additional text, links to Web pages, other videos, and

communication topics. The interactive video client is able to

decode and display videos and their annotations in parallel.

Users can access those annotations at any time while watching

a video.

Interaction with the video is thus possible in two unique

ways: annotating related media to a video, as commonly used

in hypertext documents, and accessing the annotated media

objects (navigation). Navigation is possible by clicking on

an interactive hotspot that represents the video object (see

Figure 2), resulting in linked information nodes becoming

visible. Information nodes offer an option to access a single



media item related to the annotated object in the video. An

interaction with an interactive hotspot displays a radial menu

(see Figure 2 - a). By navigating from one video to other

media elements, the user can retrieve hypertext documents

(see Figure 2 - b), communication nodes (including chatting

functionality), and other videos. Users can thus jump between

links to other media elements easily.

Annotating a Video
As a user annotates an object in a video, the system tries to

directly show this annotation to all other users and let them

interact with it. Annotations, as well as the related tracking

information, are stored in the MPEG-7 format. All annotations

for a video are stored in one so-called interactive video
document. It is read by the client software to visualize an-

notations. Besides this, each video contains a second MPEG-

7 document that contains object tracking features, which are

only required by support servers. As explained in Section V, a

synchronization approach is applied across different network

entities to allow different users to co-edit videos.

A user can select a video object and add information to it

in a two-step approach. Selecting a video object is done with

a mouse by clicking on the object, which pauses the video

playback. The object selection is then marked by drawing

a rectangular area around the object (see Figure 1 - a).

This initial annotation of the video invokes the automatic

object tracking on a support server. In the next step, the user

creates links to additional media (information nodes) to the

video object. Information nodes include Web nodes, image-

text (hypertext), video, and communication nodes. Web nodes
represent links to external Web pages. If the user clicks on a

Web node annotation, the system opens a new browser tab

and shows the Web page in the Web browser. Image-text
nodes (hypertext) link text blocks and images to the video

object, which are then shown within the system. The basis

for those nodes is a rich text editor, which is implemented

into the system along with a hypertext editor. Video nodes
refer to other videos that users can upload to our system.

In the system’s current version, videos have to be uploaded

to our servers. Chats between users can be initiated using

communication nodes, which users can link to video objects.

Each communication node represents a distinct channel in the

integrated chat system. Within a channel, users can exchange

questions or comments.

Any user can edit any annotation at any time after a video

object is selected. Thus, multiple users may edit the same

information nodes or video objects at the same time. A detailed

explanation of the user interface can be found in our previous

work [34], and a video demo of the system is available online1.

C. Representation of Annotations

For representing annotations in the interactive video doc-

ument, the MPEG-7 standard is used [35]. Even though

1https://www.informatik.tu-darmstadt.de/fileadmin/user upload/Group
DMS/Social Video System.mp4

this standard is rather verbose, we leverage its advantages

of available libraries, persistence support, and readability.

We have chosen MPEG-7 due to its rich support for both

representing annotations in continuous media, and as it allows

to represent common computer vision feature descriptors used

(as described in Section IV).

Interactive video documents use the <semantic> element,

which allows for storing both the location and annotated

information such as text, images, links, or other videos. As

mentioned, the annotated video object itself is represented in

our system as an interactive hotspot. The Spatio-Temporal-
Locator of the Visual Part is used to map the interactive

hotspots to MPEG-7 descriptors. With the Spatio-Temporal-
Locator, the frame number and the location of an annotated

object in a video can be specified. This Spatio-Temporal-
Locator allows the client software to visualize the interactive

hotspot in the user interface and reposition it over time.

Information nodes are linked to video objects. They contain

an annotation of one specific media type, i.e., a hyperlink,

a video, a chat topic, hypertext, or an image. For the in-

formation node, the <SemanticBase> element of MPEG-

7 is used. One semantic element is allowed to consist of

0 to n elements. The type-attribute is used to distinguish

the media which is included in the information node. The

<FreeTextAnnotation> is used to represent annotations con-

taining plain text or hypertext. Other media, such as video

or images, rely on the <MediaLocator> element. Hyperlinks

rely on the <MediaUri> element.

Data which the support servers need for an automatic

video object tracking the so-called features are extracted

from all frames after a new video is uploaded. They are

persisted in order to allow real-time tracking, as an on-the-

fly extraction of features would result in a significant runtime

increase. Those features are not only persisted as MPEG-7

documents, but also stored independent of the interactive video

documents that clients use. Most of the leveraged features are

multidimensional and of float precision.

We leverage MPEG-7 in its XML representation, and can

thus easily detect differences between copies of an interactive

video document. When an existing video object is modified,

the video object’s MPEG-7 description is exchanged with the

associated bootstrap server and later propagated to all other

network entities. The description of a whole video object

is exchanged in order to detect changes and potential con-

flicts. Potential conflicts occur as different users might change

the same video object before the changes are synchronized

between the network entities. A detailed discussion on the

occurrence of conflicts follows in Section V.

D. Backend Functionality and Maintaining Consistency

To achieve a responsive system and to ensure scalability, the

backend is split into a bootstrap server and several support
servers.

The bootstrap server allows clients to access the interactive

video system. One of its tasks is to redirect new clients to a

designated support server. The bootstrap server manages those



support servers, starting and stopping them, and assigning

them to joining clients. Before a support server is paused, the

bootstrap server is also responsible for retrieving all changes

made to the support server to be stopped. When a support

server is no longer needed (when no clients are connected to

it anymore), it is hibernated. Our support servers are linked

to clients upon request by the bootstrap server. Distribution

of clients is performed according to user groups and system

functionality. As the object tracking functionality creates high

computational complexity and is directly related to the user

creating an annotation, server entities conducting the tracking

can only support a limited number of clients. Although clients

may be distributed over different servers, they may work

collaboratively on the same video. Thus, we split clients

based on a load-balancing approach, and split the functionality

for coordination and bootstrapping from the functionality of

supplying a client and performing its object-tracking requests

to support servers.

Support servers have the objective of receiving and exe-

cuting object-tracking requests when one of their assigned

clients annotates a video. In addition, the support server

stores annotations added by a client to the interactive video

document. Once a support server is assigned to a client, re-

quests and modifications made by this client to the interactive

video documents are sent directly to the support server. Our

interactive video system leverages Amazon EC2 small-size
instances2 as support servers. Each support server is based on

a machine image that can be deployed at any time. It consists

of the server software necessary to maintain interactive video

documents and the object tracking algorithms. In our system,

some support servers are kept as a backup for new clients,

so that the support server’s startup time has no influence on

system performance. If a rapid increase in the user number

(e.g., due to flash crowds) occurs, new support servers will be

started, resulting in a significant delay. After a user specifies an

interactive hotspot in a video frame, a tracking module on the

support server automatically identifies the interactive hotspot

in all subsequent frames. A session management module on

all support servers coordinates modifications on interactive

video documents. The next sections focus on the automatic

object tracking in Section IV and the eventually consistent

synchronization across distributed entities in Section V.

IV. VIDEO OBJECT TRACKING

In the annotation phase, a user can mark a rectangular

region, which is visualized as an interactive hotspot on the

client’s user interface. After it has been created by the user,

the video object tracking uses the x- and y-coordinates of this

rectangular region for tracking. We call this the object region,

and it may move and change its size according to the position

of the annotated video object. In the video frame in which the

object region is created, features are extracted that are used

for the automatic tracking. Features extracted include: Point

descriptors using illumination, edge differences, optical flow,

2http://aws.amazon.com/ec2/

and color features. This variety of features helps our adaptive

object tracking to leverage the fact that in different situations,

tracking algorithms perform in different ways. Previous work

has shown that an adaptive selection of appropriate tracking

algorithms can improve the robustness of the tracking results

in user-generated video [36] This robustness is hard to achieve,

as user-generated videos suffer from degradations such as

camera shakes and harmful occlusions; thus, recorded videos

are often blurry or over/underexposed [37]. Therefore, our

system analyzes properties of the object region to dynamically

select the algorithm that works best for both the given video

sequence and the object region.

We have implemented the following alternatives as de-

scribed in Section II-B:

• the MeanShift color-based clustering algorithm [20],

• a template-based tracking approach,

• the Speeded-Up Robust Feature (SURF) extraction and

tracking [21], in combination with the Kanade-Lucas-

Tracker (KLT) [22].

The color feature-based MeanShift algorithm is used for

tracking objects that have unique, and easily trackable, color

distributions. Such video objects can be easily distinguished

from other objects in the video frame. While Speeded Up
Robust Feature (SURF) [21] is a reliable and quick feature

extractor, but the extraction and comparison of features are still

an order of magnitude slower in comparison to the MeanShift

algorithm. Thus, to compare the descriptors of an object
region with descriptors of a video frame, the hierarchical k-

means and the randomized k-d tree are used; these are pro-

vided by the Fast Library for Approximate Nearest Neighbors

(FLANN) [38]. In addition, most computational load caused

by the extraction of SURF features can be performed in an

offline pre-processing step. The idea of using the Kanade-
Lucas tracker (KLT) [22]1981] is to compensate for the

possibility of SURF-based tracking being unable to find a

sufficient number of features for reliable tracking in time. This

can be caused by object deformations or significant motion.

In those cases, KLT is used to describe the object movement

in subsequent video frames.

A. Adaptive Selection of an Algorithm

By leveraging different features and changing from one

tracking algorithm to the other, our system achieves more

robust tracking results. The selection process of the tracking

algorithm is depicted in Figure 3. SURF-based tracking uses

features that are scale- and rotation-invariant to the searched

object region. Reliable results of this feature-based tracker

require that a sufficient number of SURF descriptors can

be extracted. The new object position is calculated when

the number of matching descriptors exceeds a threshold of

Nf,min = 10. This threshold has been empirically derived

during the evaluation of our system, ensuring correct detection

(true positive match) and risking tracked object loss. Two

system design decisions were made in respect to SURF-based

tracking. First, our approach attempts to find and track video

objects over the course of a video sequence - not only within



Fig. 3. The selection of the video object tracking algorithm.

the range of a video shot. Second, as moving objects can only

cross a certain distance between two consecutive frames, we

limit the distance between the descriptors. These descriptors

are removed from further processing when the distance of such

a match exceeds a defined threshold dmax.

MeanShift works as a segmentation algorithm, using colors

to track the annotated object region. It is chosen when the

object region’s color distribution differs significantly from

the color distribution of all frames in a video sequence (see

Figure 3). The rationale behind this approach is that objects

can be detected more reliably if their dominant colors are

unique in comparison to the background. This works especially

well for detecting the unique color of skin in face detection.

The precision of using MeanShift for tracking is expected to

be lower compared with the SURF-based tracking. However,

the algorithm is, to a certain extent, robust with respect to

scaling and rotation.

In the remaining cases, template-based tracking is chosen. It

uses a brute-force comparison of color and intensity values in

an object region versus the entire frame. In frames where the

number of corresponding descriptors drops below the defined

threshold, arbitrary features of the last detected object position

are chosen to predict the object’s position using the KLT in

the next frame.

B. Potential for Reducing the Detection Time

Ideally, the tracking results of our system are required in

near real-time to ensure that interactive hotspots are positioned

according to movements of the annotated video objects. The

following properties in our tracking algorithm have shown the

highest impact on our tracking algorithm’s runtime: 1) video

resolution and frame rate, 2) the concurrent tracking requests

on the support server that executes the algorithm, and 3) the

selected tracking approach. Furthermore, capabilities of the

server are important for ensuring a timely tracking completion.

To ensure a timely completion of automatic object tracking,

some design decisions were made. For example, tracking

is triggered instantly when an interactive video system user

completes the first step of the annotation process. This step

ends when a user has selected the object region. While the

user is still adding information to the video object using

information nodes, the adaptive object-tracking method is

already processing the video. The intermediate results of the

tracking are stored on the assigned support server and then

- represented in the MPEG-7 notation - transferred first to

the annotating client and next to other connected clients. This

ensures that the client of the user creating a video object

retrieves the tracking results first.

Additionally, the three algorithms pursue a coarse- to fine-

grained tracking approach: When tracking is initiated, the

algorithms are trying to find the video object’s position in

every 15th frame, i.e., every 0.5 seconds at a frame rate

of 30 frames per second, or every 12th frame at a frame

rate of 24 frames per second. Thus, the tracking algorithm

is able to inform the client how to reposition the interactive

hotspot as soon as the user continues video playback. Tracking

information and object positions are transmitted - in MPEG-

7 notation, as described in Section III-C - to the client.

After coarse-grained tracking is complete, object positions are

computed for all remaining frames. The interpolated object

positions are then replaced by the exact tracking results. This

last step is performed when the load of the server is low, e.g.,

only when some or no users are annotating video. Thus, after

the user annotates a video and continues playing the clip, he

will usually see the results of the coarse-grained tracking in

our system setup.

In addition, we applied offline pre-processing steps: The

SURF feature descriptors and color histograms of each video



frame are computed as soon as a video is available on one

of our servers. In the case of the SURF descriptor-based

tracking, this implies that only a comparison of the descriptors

is necessary and not the feature extraction step. The only

tracking algorithm that is computed immediately is the brute-

force, template-based matching.

C. Robustness of the Tracking Approach

One issue that arises when tracking video objects is the

occurrence of partial or full occlusions. Our system integrates

an occlusion detection that is applicable if SURF descriptors

are available. The occlusion detection is initiated when the

number of matching SURF descriptors significantly drops in

one or more quadrants of the object region. A first estimate

of the position of the object region is calculated based on the

remaining descriptors. To prevent occlusions from hindering

the system in object tracking, a linear approximation of the

feature movements is applied for the next three seconds to

estimate if an object is only temporarily occluded. In those

cases, the movement of the object during the occlusion phase

is approximated, and the interactive hotspot will be positioned

accordingly. More computational intensive algorithms with a

higher reliability include methods relying on detecting edge

changes [39] or object movements [17].

Scaling of a tracked object region can be easily handled

by our approach, as all three tracking methods (SURF/KLT,

MeanShift, and template-based tracking) can detect scaling

and rotation. While SURF descriptors are explicitly chosen to

be invariant under rotation and scaling, and indeed achieve

the highest robustness of the three approaches, MeanShift

relies on the representation of color distributions in the form

of histograms. The algorithm tries to find similar regions

in the frames with similar color distributions, independent

of the structures or proportions that those regions represent.

Template-based tracking robustness is enhanced by applying

a pyramid style matching approach. This approach scales the

object region into five versions of different sizes (33%, 66%,

100%, 133% and 166% of the original dimensions), as well as

three rotations to the left and to the right (0°, 10°and 25°), re-

performing the template-based matching with different object

region versions.

The system relies on the quality of user input during the

annotation phase. An object region created by the user must

cover important parts of the object to be tracked and simultane-

ously be precise enough to not include too much background.

To exclude background features that should not be tracked,

we crop a border area of the template (up to 15%). Figure 1

visualizes the effect of imprecise selections. A good template

created by a user is annotated in Figure 1 - a. In addition

to several background features, the template includes exactly

one semantic object, a goat. Selecting an object region that

covers exactly one object ensures a reliable and fast tracking

process. Figure 1 - b, on the other hand, shows that multiple

semantic objects (two goats) are selected in one template.

Our object-tracking approach is not able to distinguish those

objects, thus creating a single object region. If, for example,

the goats move away from each other, this would result in an

increasing interactive hotspot size. A solution implemented in

our system is that a user can manually change an object region

at any time. Based on this new object region, there will be a

retracking of the video object.

V. MAINTAINING CONSISTENCY

As described above, our interactive video system uses a

distributed architecture in which different network entity types

are responsible for executing different tasks. The synchro-

nization of interactive video documents across those entities

can be challenging. An example of the assignment of clients

and the setup of the system is shown in Figure 4 - a.

The bootstrap server is used to assign joining clients to

their support servers. Support servers maintain copies of the

interactive video document for each client. This copy is always

kept consistent with the annotations made by the associated

client. Besides the communication necessary for maintaining

the consistency across network entities (depicted in in Figure 4

- a), the connectivity between network entities is monitored.

For managing interactive video documents and maintaining

eventually consistent server states, HTTP GET and HTTP

POST requests are used. For a specific client, HTTP GET

requests the initial interactive video document and requests

for receiving updates from other clients. If this specific client

creates new annotations or changes existing ones, it informs

the responsible support server using HTTP POST. ICMP

(Internet Control Message Protocol) ping requests are sent

from the central bootstrap server to the support servers in

order to signal the status of the servers. Clients regularly report

their availability using the HTTP POST requests. The Network

Time Protocol (NTP) is used for the clock synchronization

between network entities.

A. Occurrence of Inconsistencies

Inconsistencies can arise when several users, working on

copies of the same interactive video document, edit the same

video object when it is not yet consistently persisted on all

network entities. This consistency is broken as soon as one

user edits a video object, adds information nodes, or changes

the interactive hotspot location manually (reinitiating object

tracking). Until the user completes the annotation process

and its changes are processed by all sites, any annotation by

other users to the same video object implies an inconsistency

that has to be resolved by our consolidation process (see

Subsection V-B). Such inconsistencies can occur often in our

system, as concurrent annotations of videos by users are an

intended aim of our system.

In our system setup, we aimed for approximately 200

concurrent users. Our concepts are not limited to hundreds,

but potentially thousands of concurrent clients and hundreds

of concurrent support servers. Their concurrent annotations

may generate multiple megabytes of conflicting updates until

consistency can be reestablished, as annotations can have

rather large data sizes. The data includes annotations created
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by the user as well as the results of object tracking, e.g., as a

user initiated a tracking of an existing video object.

Every support server is responsible for managing the annota-

tions of the assigned clients, and thus a copy of the interactive

video document without consultation of any other server.

Annotations can then be transferred to the bootstrapping server

as soon as no assigned client is annotating the video anymore.

Yet, in the meantime, another client assigned to another

support server could have edited the same video object, which

will result in an inconsistency – as remaining servers are

not immediately informed if a client annotates a video. Thus,

each support server is responsible for monitoring each of its

assigned clients whether it is annotating a video by adding

metadata to the interactive video document (see Figure 4 - b).

Inconsistencies are then resolved first at the bootstrap server;

then, the solution is propagated to the remaining support

servers, and finally, the clients. By keeping changes locally

on the support server, communication and synchronization

overhead is kept low, and the system remains responsive,

as objects are not locked for editing. Every annotation in

the client’s copy is identified by a managed identifier and a

timestamp maintained on their support servers.

In addition, results of the automatic object tracking need to

be synchronized. For example, SURF features consist of 64

dimensions of floating point numbers, where, depending on the

resolution of a video frame, multiple thousands can be found in

a single video frame. Even though clients do not require this

data, multiple support servers exist that require establishing

consistency across these features. Again, the descriptors and

features needed for tracking are not persisted using MPEG-7

notation, but stored as independent files from the interactive

video document that is used by the clients.

B. The Consolidation Process

We explain the consolidation process by the examples

shown in Figure 4 c-e. This consolidation process is applied for

all annotations and tracking results. The bootstrap server, using

each annotation’s timestamp, coordinates the consolidation.

Consolidation in eventual consistency-reliant systems relies on

an application-specific logic that the system designer has to de-



fine. The consolidation process specifies how inconsistencies

for a specific application should be resolved.

Server consolidation is based on three simple rules:

1) New information is always added to the reference inter-

active video document;

2) a modification of an information node or a video object

weighs more than its deletion;

3) for two modifications by two different users, the times-

tamp of an annotation determines which one is persisted;

an earlier change survives.

These rules are applied individually for each information

node. Information nodes have unique identifiers that allow

easy retrieval and modification in even large interactive video

documents. If conflicts occur between copies of an interactive

video document, the corresponding information node identifier

is retrieved, and rules are applied to this information node in

the reference interactive video document.

The first rule implies a growing interactive video document.

The second rule addresses inconsistent states between two

entities of the same video object that are modified on two

support server entities (S1, S3) and deleted on a third (S2).

Consider the case as depicted in Figure 4 - b. The deletion of

an annotation is reverted after all entities are synchronized and

changes are persisted. Additionally, the first two rules mimic

the behavior of other eventually consistent applications, e.g.,

see Vogel et al.’s work [24] – ensuring that users are always

able to write their changes to the interactive video document.

The third rule may result in conflicts, as modifications on the

same video object that cannot be resolved by rule 1 or 2 are

sorted by the timestamp in ascending order. If the changes

cannot be merged automatically, e.g., a change on the same

line of a hypertext node, the earlier change will be persisted.

The user contributing the latter change will be informed that

his changes have been discarded. This design decision is made

in order to establish a growing video document, in which

inconsistencies are resolved based on the idea that the first

annotation always wins. This contradicts classical approaches,

which take into account lost updates but only save the last

change. In our eLearning scenario, this would mean that we

want to motivate users to quickly enrich the video with new

information. The changes made by a quick user should first

be visualized to other users currently annotating the same

information node, so that they can react to it. Consider a long

text information node changed by user A: Even though the

changes to a node of user B have been discarded, he can now

(based on the updated text) decide whether to add information

again or keep the updated version of user A. More formally,

we assume that the latter modification is based on a version

at t2 of the element, which did not see the changes of t1 (see

Figure 4 - c). Thus, changes of t1 should be synchronized

first, and the network entity conducting changes at the same

element at a time t2 is informed.

C. Implications of the Design

We note that changes to the same element of a video object

on two different server entities at exactly the same time are

very unlikely. This unlikely case results in a conflict that has

to be resolved manually. This conflict is resolved by creating

two copies of the element and letting the users decide which

elements are persisted (see Figure 4 - e). This is a disadvantage

of relying on an eventually consistent paradigm.

When the load on a support server (the CPU utilization

across all cores) decreases, e.g., when users are leaving or

no changes affect the interactive video document, the support

server transfers local modifications to the central bootstrap-

ping server. This process is automatically aborted when a

new client request is retrieved. Synchronization times can

differ significantly. The bootstrap server distributes changes

to individual support servers, incorporating changes into their

copies of the interactive video document. Even under a high

load, consistency is established at some point in time after

updates cease. Due to our synchronization functionality, all

users watching a video will operate on the same data after a

while.

Because the system relies on cloud capabilities, it scales to

multiple support servers and a large number of users. However,

the bootstrap server is a single point of failure; when this

entity fails, no new users can join the system. It should be

mentioned that active users are not disconnected because every

user client is assigned to one support server, and there is

no need to directly communicate with the bootstrap server.

When the bootstrap server is available again, every support

server sends its reference document with the changes to it,

which resolves inconsistencies. Note that in situations when a

lost connection is reestablished, operations performed on the

interactive video documents are idempotent.

VI. EVALUATION

In this section, we discuss the performance of our dis-

tributed, interactive video system. Experiments were designed

with three central questions in mind: First, how do users

annotate objects in a video (Q1)? Second, how do users

perceive the support provided by the automatic object tracking

algorithm (Q2)? Third, what are the implications for users

when a weak form of consistency is applied for synchronizing

their annotations (Q3)?

Facebook was selected to host our interactive video sys-

tem in order to easily reach potential users. Users recruited

for our evaluation were mediated by running our system’s

client software as a Facebook application. An uncontrolled

evaluation was conducted to assess the system performance

under realistic conditions. Tutorials assisted users in system

use. A snow-sampling approach was used to gather users

by starting recommending the system to acquaintances on

Facebook, which in turn motivated others to use our system.

The interactive video system attracted more than 12,000 users

for four months in 2011 (May-August). Around 45.16% of

the users used the system longer than 240 seconds, showing

a successful deployment.

We describe the results of our evaluation in three subsec-

tions. First, the annotation process and user interactions are

evaluated (Q1). We integrated a survey module into our system



TABLE I
NUMBER OF USERS THAT RATE THE DIFFICULTY TO CREATE NEW INFORMATION NODES ON A MEAN OPINION SCORE (MOS) BETWEEN 1 (VERY

COMPLICATED) AND 5 (VERY EASY) (SEE ONLINE APPENDIX: A12-A15).

��������Node
Value 1 2 3 4 5 Average Variance

Image/Text 9 6 65 77 68 3.84 1.03
Video 11 28 141 33 12 3.03 0.68
Chat 0 15 80 66 64 3.80 0.87
Web 6 18 72 61 68 3.74 1.12

to measure user satisfaction with specific system features. In

total, the survey module asked up to 48 questions, which

addressed areas including annotating videos using our system,

errors in video object tracking that were obvious to users,

and transparency of the eventual consistency paradigm (see

Online Appendix). Each question was answered exactly once

by each user. Only 225 of more than 12,000 users were

required to answer these survey questions. Other questions

in our survey were designed to determine the performance of

every system feature. After its first use, each system feature

triggered a respective subset of survey questions. Features

which were evaluated include, e.g., marking a video object

with an interactive hotspot and adding information nodes –

including all the steps discussed in Section III-B, which are

required by the navigation and annotation process. Ratings

were based on a five-point Likert-scale [40], which allowed us

to determine a feature’s effect on the overall user satisfaction

with the interactive video system. The survey included the

answers of 225 randomly selected users, who completely

answered all questions3. Mixing cocktails was selected as the

topic for the evaluation of our distributed, interactive video

system. The system included short video sequences describing

distinct steps in creating a cocktail. Users could annotate the

interactive videos and add links to their own cocktail recipes.

The basis for these recipe videos were 18 short videos, each

of them showing a small step in the process of cocktail

mixing, e.g. floating or shaking. One complete recipe video

was provided to demonstrate the aim of our evaluation.
Second, a quantitative evaluation of the automatic video

object tracking was performed (Q2). Besides annotations, au-

tomatic video object tracking also affects the user experience.

Precision of position detection and processing time are the two

major metrics. The precision describes how often the correct

position of a video object was detected in comparison to a

manually determined ground truth. If the object is not located

correctly in a range of 15 pixels around the object contour, this

may lead to misinterpretations, as users are no longer able to

identify which object is meant. Processing time indicates if the

video object-tracking algorithm is capable of repositioning the

interactive hotspots in time.
Third, the synchronization process which applies eventual

consistency has been evaluated (Q3). In order to better un-

derstand the eventual consistency paradigm and its impact on

users, all sessions of our system were analyzed to determine

3The user dataset consisted of 68 female and 157 male users with an average
age of 27.01 years.

the time period of inconsistent interactive video documents. As

one central bootstrap server existed in our setup – operating

both as a tracking and load balancing entity – we measured

the delay until a consistent state on this node was reached.

A. Annotations in the Interactive Video System

Embedding the interactive video system into a social

medium such as Facebook allowed a high number of users

to annotate, upload their own videos as annotations, and share

their annotations with others. 23 new video clips were created

that can be classified as cocktail recipes; in total, 41 video clips

were available at the end of our evaluation. Users created a

rather high number of recipes (78). Thus, we conclude that the

general aim of our system to motivate users to contribute their

own annotations was achieved in our cocktail mixing scenario.

Table I shows the aggregated ratings given in the survey

module (see Online Appendix: A12-A15). It illustrates that

the creation of all types of information nodes was perceived

as very easy or easy by a majority of the users. During this

evaluation, each user created on average 5.1 (variance: 2.4)

annotations to a video object. Each annotated video clip has

an average of eleven newly created video objects. The video

clip duration was between 65 to 175 seconds.

In total, 1,148 annotations were added during the evaluation.

Most annotations (49.39% of the information nodes) are

links to external Web-pages. The number of embedded text-

image nodes was the second highest at 29.36%. 12.89% of

annotations were links to other interactive video documents.

This low value is probably caused by the increased effort,

because it is more complicated for users to find suitable videos

that are related to the topic of cocktail mixing.

A total number of 136 changes to information nodes showed

the collaborative use of the interactive video system. Most

of these changes (107) are based on text-image nodes. These

changes either complete text or fill gaps in the logical structure.

It is obvious that users helped each other in creating a broad

knowledge base. This observation is strongly supported by an

average usability score of 3.87 (1 = does not support at all; 5 =

very helpful) and a variance of 0.81, when users are asked how

the system supports the annotation and co-editing of videos

between users (see Online Appendix: A40). On average, a user

interacted with 18.12 information nodes during a session. We

interpret this as a considerably high rate of interactions with a

video. Especially, the idea of leveraging links between videos

4Video Source: https://durian.blender.org/



TABLE II
DETECTION RATES OF OUR ADAPTIVE OBJECT TRACKING BASED ON SURF, MEANSHIFT, AND TEMPLATE-BASED TRACKING.

Video No. reference
positions

SURF/KLT MeanShift Template-based Adaptive
tracking

Football 126 97.62% 80.16% 1.59% 99.21%
Cars 42 100% 0% 0% 100%
Street 40 100% 0% 0% 100%
University I 170 98.24% 17.06% 25.88% 98.82%
University II 81 98.77% 0% 0% 98.77%
Occlusion 147 74.83% 0% 7.48% 73.47%
Sports 225 88.89% 6.22% 0% 90.22%
Windmill 440 86.82% 86.59% 23.18% 99.09%

Sintel I4 285 91.58% 0% 100% 100%

Sintel II4 213 73.71% 89.20% 48.83% 97.65%

Sintel III4 305 48.52% 0% 5.25% 49.51%
Rabbits 120 63.33% 0% 59.17% 70.83%
Flamingos 45 31.11% 100% 17.78% 100%
Highway 48 93.75% 0% 0% 93.75%
Lions 143 81.82% 0% 13.29% 89.51%
Prairie dogs 96 77.08% 0% 30.21% 81.25%

Overall 2,526 80.60% 30.09% 27.36% 88.16%

has been used by each user – on average in 77.6% of the

available videos. This indicates that each user accessed more

than three quarters of the available video nodes. With this, we

can answer our first evaluation question (Q1) and conclude that

by an easy authoring tool as implemented in our system, users

tend to often annotate videos – and this ease of annotation is

key to user satisfaction.

B. Automatic Video Object Tracking

Table II shows our results of the adaptive tracking algorithm

in comparison to SURF-only feature matching, the MeanShift-

only algorithm, and a template-based matching.

The precision of our algorithm (88.16%) shows a superior

performance in comparison to SURF/KLT matching (7.56%
improvement), which is the second best algorithm. Both

MeanShift (30.09%) tracking and template-based matching

(27.36%) performed significantly worse. The content of a

video, its colorfulness, and the number of available SURF

features in an object region determine how often each algo-

rithm was initiated. In total, SURF/KLT tracking was used in

51.17% of all frames evaluated, the MeanShift algorithm in

only 13.29%, and template-based tracking in the remaining

35.54%. The false hit rate gives the percentage of frames in a

video in which our adaptive tracking algorithm calculated the

wrong object region position. The adaptive tracking resulted

in the lowest false hit rate (7.0%), whereas SURF/KLT-

only caused 7.69% false classifications, the template-based

matching generates around 20.37% false hits, and MeanShift-

only caused more than 26.06% false classifications.

Latency is the second important metric for the interactive

video system. While watching a video, a precise tracking

approach has to ensure that interactive hotspots are positioned

correctly. At Full-HD resolution and 30 frames per second,

the system required between 2.66 and 3.48 seconds per video

second, depending on the test system5 used. Consequently, we

reduced the analysis interval to every sixth frame of a video.

These conditions are harder than in the deployed system,

in which only every 12th frame (or 15th) was used for the

coarse-grained tracking. Thus, the computation time could

be reduced significantly, and the interactive hotspots were

visualized correctly. The computation time (between 0.51 and

0.87 seconds) allows an object tracking in real-time. During

the evaluation described above, users were asked to rate the

quality and effectiveness of automatic tracking. In total, users

initiated 383 tracking requests. Only 16 users (4.18% of the

tracking requests) found incorrect object positions (see Online

Appendix: B26). Such errors occur when occlusions, object

deformations, or poorly selected object regions were present.

None of the users of the evaluation reported a problem with

slow tracking (Q2).

C. Maintaining consistency

For assessing eventual consistency mechanisms, we eval-

uated when the bootstrap server reached a consistent state

after new annotations were added. From our system setup,

synchronization of the support servers with the bootstrap

server was done every time the support server retrieved no

new annotations or requests by associated clients.

The cumulative distribution function (CDF) in Figure 5

- a shows the time it took until synchronization between

the support server and the central registration server was

achieved. The basis for this evaluation were 1,148 annotations

that had to be synchronized. Within 4.1 seconds, 50% of all

synchronizations were complete. Note that this duration was

computed as the time interval between the object-tracking

results (data saved to the MPEG-7 interactive video document

on the support server) and the update on the central registration

server, i.e., when document changes were integrated into the

5Test systems: Laptop: Intel Core i5 (4 x 2.27 GHz, 4 GB), Lab: AMD
Opteron (2.33 GHz, 1 GB), Server: and Intel Xeon (2 x 2.66 GHz, 8 GB)
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Fig. 5. An overview on the time the system requires to consolidate inconsistencies between the supporting servers and the central bootstrap server starting
from the annotation of a user until the interactive video document is consistent on the bootstrap server in seconds (a) and the session lengths of users accessing
the system within one month in seconds (b).

interactive video document. The CDF illustrates that at its

peak, significantly larger times are required – up to 45 seconds.

This results from concurrent modification, with a maximum of

216 parallel users. Yet, in more than 95% of all cases, the sys-

tem reestablished consistency within 10 seconds. This is in line

with the findings with the Amazon S3 system, which needs

approximately 13 seconds for reestablishing consistency [29].

The collaborative annotation of video sequences is coordi-

nated by one bootstrap server and three support servers. An

interesting observation during the evaluation period was, that a

constant load across all entities could be observed. For 34.7%
of the active session length in peak usage times, the users

observed inconsistent system states. This shows two things:

First, eventual consistency in such a highly collaborative

system can be applied without degrading the usability of the

system; second, inconsistency arises for a large proportion of

the times in our system. Approximately 82.9% of users recog-

nized no synchronization errors at all (see Online Appendix:

D44). 13.2% of the users recognized errors only when using

the chat functionality. As chat is highly real-time dependent,

all inconsistencies were obvious to users: elements such as

backlogged topics or messages suddenly popped up in the

user interface when consistency was restored. Thus for the

third evaluation question (Q3), we conclude that a transparent

usage of the eventual consistency paradigm is possible for

an interactive video system. We can conclude that even weak

consistency forms are typically imperceivable for most users

and thus not reducing the perceived quality.

Figure 5 - b shows an overview of session times gathered

from users who accessed the interactive video system within

one month. Data from 9,393 sessions collected during this

month was used to determine the average session length. The

median lies at 115 seconds, with an upper quartile of 214

seconds. The median illustrates that despite a large percentage

of very short sessions– where users decided to exit our system

within a few seconds – half of the sessions lasted for almost

two minutes, and 25% lasted for more than 3.5 minutes.

VII. CONCLUSION

This paper describes a system for collaboratively annotating

video objects. As annotations are linked to objects in a video

and visualized as an overlay close to the video object, they

have to be continuously repositioned as the objects move. Our

first innovation is an adaptive algorithm design for tracking

annotated objects over all video frames. Our second innovation

is the implementation of the weak consistency paradigm for

multiple parallel annotations. Our system allows many users

to annotate the video at the same time without waiting for

a fully consistent state. While the world state might become

inconsistent for some time, eventual consistency is guaranteed.

To the best of our knowledge this is the first successful attempt

to combine eventual consistency with a massively interactive

and collaborative video annotation system.

An evaluation of our system with real users of the online so-

cial network Facebook shows that reduced consistency is eas-

ily accepted, often even going unnoticed. The proposed system

is a successful step towards combining the weak consistency

paradigm with interactive videos and automatic object-tracking

algorithms. We conclude that our system offers scalability,

consistency, and an enhanced user experience. Scalability is

also maintained even if concurrent access rates on the same

videos increase spontaneously, e.g. in flash crowd scenarios

[41]. In these situations, the illustrated synchronization times

between support servers would increase, but individual user

responsiveness would not decrease. Although we evaluated our

system with hundreds of users only, we believe that our results

are equally applicable to much larger user numbers.



For future work, we plan to concentrate on the support

of video annotation systems by large-scale content distribu-

tion methods. Additionally, researchers like Bailis et al. [26]

promise that the advantages of eventual consistent, yet scal-

able, systems can be achieved with stronger consistency

paradigms such as CALM (consistency as logical monotonic-

ity) [42]. Thus, there are other paradigms for consistency in

distributed systems than the classical full consistency and the

eventual consistency discussed in this work.
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