
Parallel Implementation of a Real-Time
High Dynamic Range Video System
Benjamin Guthiera,*, Stephan Kopfa, Matthias Wichtlhuberb and Wolfgang Effelsberga

aDepartment of Computer Science IV, University of Mannheim, 68131 Mannheim, Germany
bPeer-to-Peer Systems Engineering, University of Darmstadt, 64283 Darmstadt, Germany

Abstract. This article describes the use of the parallel processing capabilities of a graphics chip to increase the processing
speed of a high dynamic range (HDR) video system. The basis is an existing HDR video system that produces each frame from
a sequence of regular images taken in quick succession under varying exposure settings. The image sequence is processed in a
pipeline consisting of: shutter speeds selection, capturing, color space conversion, image registration, HDR stitching, and tone
mapping. This article identifies bottlenecks in the pipeline and describes modifications to the algorithms that are necessary to
enable parallel processing. Time-critical steps are processed on a graphics processing unit (GPU). The resulting processing
time is evaluated and compared to the original sequential code. The creation of an HDR video frame is sped up by a factor of
15 on the average.

Keywords: Real-Time, High Dynamic Range Video, Parallel Processing, GPU

*Corresponding author. E-mail: guthier@informatik.uni-mannheim.de

1. Introduction

A recurring problem in capturing video is the sce-
ne having a range of brightness values that exceed
the capabilities of the capturing device. An example
would be a video camera in a bright outside area,
directed at the entrance of a building (e.g., see Figure
1). Because of the potentially big brightness differ-
ence, it may not be possible to capture details of the
inside of the building and the outside simultaneously
using just one shutter speed setting. This results in
under- and overexposed pixels in the video footage.
The approach used in this article to overcome this
problem is temporal exposure bracketing, i.e., using a
set of images captured in quick sequence at different
shutter settings. Each image then captures one facet
of the scene’s brightness range. When fused together,
a high dynamic range (HDR) video frame is created
that reveals details in dark and bright regions simul-
taneously.

The process of creating a frame in an HDR video
can be thought of as a pipeline where the output of
each step is the input to the subsequent one. It begins
by capturing a set of regular images using varying

shutter speeds. For easier processing, the images are
converted into a different color space. Next, they are
aligned with respect to each other to compensate for
camera motion during capture. The aligned images
are then stitched together to create a single HDR
frame containing accurate brightness values of the
entire scene. As a last step, the HDR frame is tone
mapped in order to be displayable on a regular screen
with a lower dynamic range.

It is desirable to perform all necessary steps from
capturing of the low dynamic range (LDR) images to
displaying of the HDR frame in real-time. The result
is a live HDR video that can be viewed instantane-
ously. Example scenarios for such a video are a sur-
veillance camera monitoring the entrance to a build-
ing or an advanced driver assistance system that
works even in difficult lighting situations like the exit
of a tunnel. If the goal of the real-time HDR video
system is to achieve a rate of 25 frames per second,
all the steps of the HDR pipeline must be completed
within 40 ms. This requirement necessitates a high
frame-rate camera, fast algorithms for processing of
the frames, and a fast implementation.

This is a preliminary version of an article published by
B. Guthier, S. Kopf, M. Wichtlhuber, W. Effelsberg:
Parallel implementation of a real-time high dynamic range video system.
Integrated Computer-Aided Engineering 21(2): 189-202 (2014)

The basis for the work described in this article is
an existing HDR video system [12]. It implements all
steps of the HDR video pipeline. The employed algo-
rithms are optimized for reduced capturing costs and
fast processing speed. They are implemented as
strictly sequential code running on a CPU. This arti-
cle focuses on a parallel implementation of the steps
of the pipeline. It makes use of the parallel pro-
cessing capabilities of a modern graphics processing
unit (GPU). The article begins with an introduction to
GPU programming in Section 3. A basic understand-
ing of the underlying concepts is necessary to com-
prehend the design decisions made in the later sec-
tions. Section 4 gives an overview of the HDR video
system to be optimized, outlining the steps of the
HDR pipeline and their major subtasks. Because im-
plementing an algorithm to run on a GPU can be dif-
ficult, it is preferable to focus on the subtasks that
benefit from parallelization the most. Considerations
regarding the necessity and feasibility of a parallel
implementation are given in Section 5. It also de-
scribes the modifications to the identified subtasks
that were necessary to process them in a parallel way.
The performance of the parallel implementation of
the HDR video system is evaluated in a realistic sce-
nario and compared to the existing CPU implementa-
tion in Section 6. The section also discusses the sys-
tem's run-time behavior when changing the image
size or the number of captured LDR exposures.

2. Related work

The fast increase of the computational power of
personal computers has made the development of
real-time multimedia systems possible that even al-
low complex video analysis and video processing
tasks [1]. Parallelization of processing tasks is espe-

cially useful in the case of low-level image pro-
cessing algorithms [2].

The goal of our system is to achieve a rate for the
resulting HDR video of 25 frames per second. We
defined an upper limit of eight low dynamic range
exposures per HDR frame. This means that our sys-
tem must be capable of processing 200 LDR frames
per second in the worst case. Such high frame rates
necessitate the use of efficient implementations.
Many of the necessary computations are inherently
parallel. Oftentimes a simple arithmetic operation
must be applied to a large number of pixels. Contrary
to a CPU, which is optimized for executing a low
number of complex tasks, GPUs are capable of pro-
cessing large numbers of comparably simple tasks,
which makes them suitable for image and video pro-
cessing tasks.

Examples of works in the area of GPU implemen-
tations are [6, 17, 18]. Using a GPU, it is even possi-
ble to run complex algorithms like graph cuts in real-
time as presented by Lattari et al. [17].

Riego et al. [20] have developed a virtual 3D inter-
face which computes the motion analysis on a GPU.
They use a parallelized hierarchical Lucas-Kanade
(HLK) algorithm to calculate the optical flow. In
contrast to our approach, the authors only consider
one computation step (the estimation of the optical
flow) without considering the other steps in detail.
This approach is applicable, because their required
30 frames per second are significantly lower com-
pared to the requirements of our system.

Van den Braak et al. [5] demonstrate how GPUs
can be used to speed up voting algorithms like the
computation of histograms or the Hough transform.
These algorithms are difficult to parallelize due to
their memory access pattern. Our implementation of
the histogram computation is very similar to their
work.

Fig. 1. The inside of the building is much darker than the outside. There is no shutter speed setting that exposes both correctly at the same time.
A shorter shutter underexposes the inside of the building (left) while a longer shutter overexposes the outside (center). A solution to this prob-
lem is merging the two frames into one HDR frame (right).

An efficient implementation of Bayer demosaic
filtering on GPUs was published in [18]. The pre-
sented OpenGL implementation of the Malvar-He-
Cutler filter is two to three times faster than a
straightforward GPU implementation.

Some recent work has been published in the area
of HDR video. Creating HDR videos typically con-
sist of four steps: capturing [7, 13, 21], LDR image
registration [8, 15], merging LDR frames into an
HDR frame [23], and tone mapping [3, 4, 9, 16, 19].

A popular technique to create HDR images is us-
ing a set of LDR images captured in quick sequence
at different exposure settings. The most challenging
problem is the estimation of the inverse camera re-
sponse function to map pixel values onto scene radi-
ance [7, 21].

Image registration may be avoided if specific
hardware is used as presented in [23]. The authors
have developed a system for capturing HDR video in
cinema quality. They focus on an optical sensor that
allows the capturing of three LDR frames with dif-
ferent exposure settings simultaneously. Major limi-
tations of their approach are the fixed number of ex-
posures and the high hardware cost for the special-
ized sensors.

Several techniques have been proposed to deter-
mine suitable exposure settings. Hasinoff et al. pre-
sent an approach to determine noise-optimal expo-
sure settings by using varying gain levels [13]. For a
given sum of exposure times, increasing gain also
increases the SNR. The proposed computation of the
exposure settings is too expensive to be used in a
real-time scenario.

Only few image registration techniques are able to
handle the lighting differences of LDR frames with
different exposure settings. Kang et al. propose a
method for estimating camera and scene motion, but
its computational cost is too high to be used in real-
time [15]. In previous work, we have proposed a fast
registration algorithm based on threshold images [8].

The tone mapping step converts radiance values
back to suitable 8-bit pixel values for display or stor-
age. Benoit et al. [3] propose a model based on prop-
erties of the human retina. HDR video content is en-
hanced by a non-separable spatio-temporal filter with
added temporal constancy. A general model for tem-
poral luminance adaptation was proposed by Kraw-
czyk et al. [16]. In accordance with the human visual
system that reacts to temporal changes in luminance
conditions, a time constant for the speed of the adap-
tation is introduced. Guthier et al. have developed a
tone mapping technique for videos which removes

flicker in a post processing step and is applicable to
all tone mapping operators [9].

To the best of our knowledge, there is no low cost
system available that allows the creation of HDR
video in real-time.

3. Considerations for a GPU implementation

To allow the creation of high dynamic range video
in real-time, time-critical parts of the HDR pipeline
are processed on a graphics processing unit. As op-
posed to a CPU with a small number of high-
performance processor cores, optimized for sequen-
tial programs, a GPU has many simple cores that
complete a large number of simple tasks in parallel.
Implementing algorithms for a GPU requires a higher
degree of understanding of the underlying platform
than a serial CPU implementation. This article thus
begins by giving an introduction to Nvidia’s Com-
pute Unified Device Architecture (CUDA) which is
used in the described work. Details can be found in
Nvidia’s CUDA C Programming Guide1 or in [22],
which discusses processor and memory organization
and generally applicable optimization strategies.

When designing a parallel algorithm for a GPU
implementation, the specific properties of the hard-
ware must be understood. CUDA classifies GPUs
into categories with similar compute capabilities,
allowing independence from hardware details. Be-
tween the GPU classes, the differences are often just
a matter of parameter adjustment, and all code is
backward compatible so far. This section introduces
the architecture common to all CUDA devices, giv-
ing numbers that are specific to the graphics card
used where applicable.

The CUDA programming model is a C99 dialect
with a minimum set of language extensions. At its
core there are three key abstractions: a hierarchy of
thread groups, shared memories, and barrier syn-
chronization. This model requires partitioning of the
problem into many small sub problems that can be
solved independently or by cooperation of the threads
within a block. More precisely, for a problem to be
shifted to the GPU, it must be expressible as a data-
parallel algorithm. Data parallelism describes a pro-
gramming paradigm that suggests the subdivision of
a problem into smaller sub problems such that the
same program (kernel) can be executed by a large
number of threads working on many data elements in
parallel.

1 http://developer.nvidia.com/cuda/nvidia-gpu-computing-

documentation

The sum of all threads launched by a GPU within
one kernel call is called a grid. A grid consists of
several blocks of threads in a two dimensional struc-
ture. The elements contained in the blocks are light-
weight threads executed by the GPU. In image pro-
cessing, there is often a one-to-one correspondence
between image blocks (e.g., 32 × 32 pixels) and
blocks of threads. This means that the image is divid-
ed into pixel blocks which are then each processed by
one thread block.

The conceptual structure of grids, blocks, and
threads is called thread hierarchy. Thread blocks are
required to be executable independently, in any se-
quential order or in parallel. This requirement allows
threads to be scheduled in arbitrary order to a flexible
number of cores, as one block is always executed by
one core. The graphics card used for this work con-
tains 15 multiprocessors of which each can process
32 threads at once.

The data to be processed (e.g., the images) must be
copied from the host computer’s memory to the
memory of the graphics card. The GPU distinguishes
between global, local, and shared memory. They dif-
fer in visibility, size, and access time. Global memory
is accessible by all threads running on all multipro-
cessors. It is typically several gigabytes in size, but
accessing it can take up to 800 clock cycles. If data is
read only and the access pattern exhibits locality, this
is sped up by level-1 and level-2 caches. The access
to local memory is restricted to a single thread and is
very fast. It is comparable to the access to CPU regis-
ters. Shared memory is a user-managed cache that is
shared among the threads of one block and invisible
to all other blocks. Its size is 48 kilobytes on the
GPU in this work, and it can be read or written with-
out latency, similar to a low-level cache or registers.
Its main purposes are fast temporary data storage and
communication between the threads of a block. For
the sake of performance, it should be avoided to use
the slow global memory wherever possible by keep-
ing intermediate results in local or shared memory.

Special care must be taken to prevent race condi-
tions when multiple threads write to the same address
of the shared memory concurrently. The entire
memory range is split up into 32 interleaved memory
banks such that successive 32-bit words are assigned
to successive banks. This means that the 32 threads
of a block that are processed concurrently can all
access the shared memory in parallel as long as the
requested words lie in 32 different memory banks.
When two concurrent threads access different words
in the same memory bank at the same time, they can
only be read sequentially, and the performance gain

of parallel processing is lost. This must be considered
when designing algorithms for CUDA.

There exist two additional read-only caches called
constant memory and texture memory. Constant
memory is used for broadcasting read-only values
quickly to requesting threads. Texture memory is
interesting in the given scenario as it is an optimized
cache for 2D access. When a thread accesses the tex-
ture cache, the hardware prefetches values from
global memory that are close to the fetched value in
2D (e.g., neighboring pixels). This decreases cache
misses in image processing applications, leading to a
large performance gain. Additionally, the texture
cache offers addressing modes like linear interpola-
tion of values in hardware. Consequently, these oper-
ations are very fast: fetching a linear interpolated
value does not take any longer than fetching a non-
interpolated one.

Multiprocessors schedule and execute threads in
groups of 32 parallel threads called warps. Warps
each have their own instruction counter and registers.
They always execute one common instruction at a
time. If threads diverge due to data-dependent
branching, the warp serializes which means that
threads following the branch are executed together
while all other threads are idle. When all threads are
on the same path again, execution is merged for the
whole warp. Such divergent branching thus slows
down execution speed and is to be avoided in the
code.

4. Overview over the HDR pipeline

4.1. Calculation of optimal shutters

Each frame in the HDR video is created from a se-
quence of differently exposed LDR images. Before
capturing such an image sequence, suitable shutter
speeds must be determined. The algorithm for find-
ing an optimal shutter speed sequence is described in
detail in [10]. It makes use of the existing radiance
histogram which is a by-product of tone mapping the
previous HDR frame. Shutter speeds are chosen in a
way such that radiance values that occur frequently
in the scene are well-exposed in at least one of the
captured images.

The "well-exposedness" of a certain range of radi-
ance values is expressed by a so-called contribution
function. It is derived from pixel weighting functions
that are often found in the literature as parts of HDR
creation techniques [7]. They judge a pixel's useful-
ness for estimating an accurate radiance value from it

and are generally used during the stitching of images
into an HDR frame. In the context of shutter speed
calculation, weighting functions are used to construct
a combined contribution function for any given se-
quence of shutter values. It indicates how well each
radiance value can be reconstructed from an exposure
sequence captured using the given shutter speed se-
quence. In other words, the combined contribution
function judges the well-exposedness of a certain
scene brightness range in a sequence of differently
exposed images.

The cross correlation between the radiance histo-
gram and the combined contribution function can
now be calculated, resulting in a total coverage value.
The coverage value is high when peaks in the histo-
gram correspond well with peaks in the combined
contribution function. This is equivalent to saying
that frequently occurring radiance values (peaks in
the histogram) are well-exposed by a certain shutter
speed sequence (peaks in the contribution function).
The algorithm uses this metric to decide which shut-
ter speeds to add to the sequence next. Once an opti-
mal shutter speed sequence is determined, it is trans-
mitted to the camera which then starts capturing.

It should be noted that the number of shutter
speeds required to cover a given scene is not known
in advance. The algorithm stops once the desired
total coverage is achieved. Furthermore, the com-
bined contribution function changes with each shutter
speed that is added to the sequence. This must be
kept in mind for the GPU implementation described
later.

4.2. Color conversion

Digital cameras usually use a Bayer color filter ar-
ray to capture color images. Each sensor pixel then
only records a specific range of the color spectrum –
either red, green, or blue. In order to obtain an RGB
value for each pixel, the two missing components
must be interpolated from the neighboring pixels. See
Figure 4 for an exemplary arrangement of red, green,
and blue pixels. In the example, a red pixel interpo-
lates its blue component from its diagonal neighbors.
Depending on the position in the array, four cases of
interpolation exist: red, blue, and two cases of green
pixels.

Most processes in the HDR pipeline only operate
on the brightness of an image and leave color un-
changed. It is thus desirable to separate the brightness
from the color information. This is done by convert-
ing the image from RGB into the Yxy color space. A

pixel is then represented by the brightness component
Y and two color components x and y. The first step
of the conversion is a matrix multiplication that con-
verts the RGB vector to XYZ. Conversion matrices
for this step can be found in the literature [14]. The Y
component is then used directly while the color com-
ponents x and y are derived from the XYZ vector in
an operation similar to normalization.

At the end of the HDR pipeline, the created HDR
frame must be converted back to RGB for display.
This is done analogously.

4.3. Histogram-based image registration

The set of low dynamic range (LDR) exposures
was captured with camera motion in between. Before
merging the images into an HDR frame, the horizon-
tal and vertical shift between each pair of exposures
must be estimated and compensated. Details can be
found in [8] and [11].

First, a so-called Mean Threshold Bitmap (MTB)
is calculated for each exposure [25]. It is a black and
white version of the original image with a threshold
chosen such that 50% of the pixels are black and
50% white. The threshold is set by first creating a
brightness histogram and finding its median. The
advantage of MTBs is that they are – to a certain de-
gree – invariant to exposure change. This is a desira-
ble property for the registration of exposure sequenc-
es.

Once an MTB is created, its pixels are summed up
horizontally and vertically to establish row and col-

Fig. 2. A mean threshold bitmap. The row and column histograms
to the left and below respectively count the number of black pixels
in the corresponding line.

umn histograms. It is necessary to calculate separate
histograms counting black and white pixels, because
pixels near the threshold are ignored. This leads to a
total of four histograms per exposure and eight histo-
grams for the registration of an exposure pair. See
Figure 2 for an example.

Next, the Normalized Cross Correlation (NCC)
between corresponding histograms of the two expo-
sures is calculated to estimate the intermediate shift.
In the example of horizontal shifts, the NCC between
the column histograms of both images is calculated
for each possible shift value within a predefined
search range. The shift value leading to the best cor-
relation value is assumed to be the correct one.

As a last step, all resulting shift vectors are vali-
dated using a Kalman filter to incorporate knowledge
of the motion in previous frames into the estimation.
Based on a certainty criterion, the shift vector is used
directly or interpolated from values obtained in pre-
ceding frames.

4.4. HDR stitching

The registered image sequence is merged into an
HDR frame in a process called HDR stitching. A
detailed explanation of it can be found in [7].

During image capture, the radiance emitted from a
point in the scene is measured and recorded as a de-
vice-specific pixel value. The goal of HDR imaging
is to recover the physical radiance again that gave
rise to a pixel value. A pixel in an HDR frame repre-
sents the radiance at one point in the scene. HDR
stitching is thus the inverse of the capturing process:
Estimating radiance from pixel values. This is done
by applying the inverse camera response function to
all pixels of all LDR exposures and dividing them by
their respective shutter speed. Like this, one approx-
imation of the radiance map is obtained from each of
the exposures. A weighted average over the estimat-
ed radiance maps then yields the real radiance. The
weighting function used here is identical to the one
used to determine optimal shutter values.

4.5. Tone mapping with flicker reduction

In order to be displayable on a regular screen, the
large radiance ranges of an HDR frame need to be
compressed to 8-bit values. Preferably, the compres-
sion is done in a way that maintains as much of the
gained HDR information as possible. This process is
called tone mapping. The tone mapper used in this

work is described in [24]. It is augmented by flicker
reduction as detailed in [9].

The tone mapper in use is a global operator that
applies the same tone reproduction function to all
pixels in the HDR frame. This function is derived
from the cumulative histogram over log radiance
values in the scene. After normalization and clipping
of the histogram bins, the cumulative histogram is
used directly as the mapping function. This is similar
to histogram equalization.

For tone mapping, the following steps are neces-
sary. The highest and lowest radiance values in the
HDR frame must be determined first to set the range
of histogram bins. A log radiance histogram can then
be calculated. It is used later to determine the shutter
speeds for the next frame. Summing up the bins re-
sults in a cumulative histogram. The tone mapping
function derived from it is then applied to each pixel
in the HDR frame.

The described operator was designed with still im-
ages in mind. It is used on each frame of the HDR
video individually. When doing so, temporal changes
of the minimum or maximum scene radiance lead to
rapid changes of the mapping function from one
frame to the next. This shows up as flicker in the tone
mapped video. Flicker is thus detected and removed
in a post-processing step. The average image bright-
ness of each tone mapped frame is calculated. Large
variations of the average over a short amount of time
indicate flicker. When flicker is detected, the average
brightness is adjusted to remove the flicker effect.
Adjusting the image brightness is done by multiply-
ing the pixels by a certain factor.

5. Parallel Implementation of the subtasks

Redesigning an algorithm for a parallel implemen-
tation takes considerable effort. It is also more diffi-
cult to assure correctness and to maintain such an
implementation. The individual steps of the HDR
pipeline are thus first analyzed with respect to the
computation time they require and their suitability for
parallelization. The former is measured easily from
the existing sequential code. The latter is judged by
the amount of parallelism a problem exhibits and its
arithmetic intensity: Parallelism is the percentage of
instructions that can be executed concurrently;
arithmetic intensity can be defined as the ratio be-
tween mathematical operations and memory access,
where a higher arithmetic intensity is preferable for a
GPU realization. Both criteria are somewhat vague
but still sufficient for assessing the suitability for a

parallel implementation. For a more detailed discus-
sion of arithmetic throughput and global memory
latency see [22].

The complete HDR video system described here
consists of the following parts: Calculation of opti-
mal shutters, capturing images, color conversion,
histogram-based registration, HDR stitching, histo-
gram adjustment tone mapping with flicker reduction,
and color back conversion. These parts can be further
divided into their computationally expensive subtasks.

 The most expensive step of determining shutter
sequences is repeatedly calculating the cross correla-
tion between the (existing) brightness histogram and
the contribution vector.

Capturing is done by the camera and cannot be
sped up. The Bayer pattern in the captured LDR im-

ages is first interpolated to full RGB and then con-
verted into Yxy.

For registration, a brightness histogram must be
calculated for each LDR image and its median must
be found. Row and column histograms are then cre-
ated from a temporary MTB and the normalized
cross correlation (NCC) between them is calculated
repeatedly. The resulting shift vector is Kalman fil-
tered.

HDR stitching consists of computing each HDR
pixel from a weighted average over the correspond-
ing LDR pixels.

Tone mapping requires the computation of a cu-
mulative log radiance histogram, which consists of
finding the minimum and maximum radiance, calcu-
lating a log radiance histogram and cumulating the
bins. Each pixel is then tone mapped from radiance
to pixel values. To reduce flicker, the average bright-
ness of the tone mapped result must be calculated,
and the image must be normalized iteratively.

In the end, the tone mapped image is converted
back to RGB.

In the following, all subtasks are analyzed with re-
spect to necessity and feasibility of a parallel imple-
mentation. The results of the analysis are summa-
rized in Table 1. Refer to Section 4 for details. For
those subtasks that are chosen for a parallel imple-
mentation, the modifications to the algorithms that
are necessary to run them on a GPU are described as
well. Subtasks that are similar to each other are dis-
cussed only once.

5.1. Normalized cross correlation

The normalized cross correlation between all row
or column histograms for all possible shift values can
be calculated independently of each other. A high
cache hit rate is expected, because the same
row/column histogram bins are read repeatedly and
never changed in between. This allows them to be
bound to the texture cache. Additionally, a high
arithmetic intensity makes cross correlation well-
suited for parallelization. On the other hand, it is a
rather cheap operation overall. Cross correlation was
implemented on the GPU only for image registration
and not for shutter calculation: The row and column
histograms were created on the GPU and thus already
reside in the graphic card’s main memory. Further-
more, they are constant during the entire cross corre-
lation, enabling efficient caching and data independ-
ence. This is not the case when determining optimal
shutters. The combined contribution, which is repeat-

Table 1

Overview of the subtasks of the HDR pipeline. Shown are the relative
computational cost, the amount of parallelism (P), and the arithmetic
intensity (AI). “high” entries indicate factors that suggest a GPU im-
plementation. Our decision for the type of implementation is given in
the rightmost column.

Pipeline Step Operators Cost P AI GPU/

CPU

Optimal
Shutter Seq.

Cross Correl. low med. high CPU

Bayer Pattern
Interpolation

- high high med. GPU

Color Space
Conversion

- high high high GPU

Image
Registration

Brightness
Hist.

Median

Row/Col. Hist.

NCC

Kalman Filter

high

low

high

low

low

med.

med.

high

high

low

low

low

low

high

high

GPU

CPU

GPU

GPU

CPU

HDR Stitching Weighted Avg. high high high GPU

Tone Mapping

Min / Max

Brightness
Hist.

Hist. Cumul.

TM Operator

Avg. Bright-
ness

Normalization

high

high

low

high

high

high

med.

med.

med.

high

med.

high

low

low

low

high

low

med.

GPU

GPU

CPU

GPU

GPU

GPU

Color Back
Conversion

- high high high GPU

edly correlated with the brightness histogram, chang-
es after each determined shutter speed. This adds a
sequential dependence to the calculation, making it
less suitable for parallelization. Since it is a cheap
operation, the existing sequential code was kept.

To compute the NCC between two row or column
histograms, one thread is started for each shift s in
the search range. Each thread calculates the normal-
ized cross correlation for its shift and writes the result
of the calculation to its corresponding position in the
result vector. In the end, the result vector is down-
loaded into the host memory. A sequential search on
the CPU finds the position of the highest correlation
value. Figure 3 illustrates the process.

5.2. Bayer pattern interpolation

For bilinearly interpolating a pixel’s RGB value
from its neighbors, four cases need to be differentiat-
ed based on the pixel’s location on the color filter
array. This means that without further modification,
this method leads to massive branching in the kernel.
On the other hand, an interpolation kernel can benefit
from texture caching, because the access pattern is
highly local in 2D. It is also a highly parallel problem.
Its arithmetic intensity varies with the pixel position
with an average of 0.65 arithmetic operations per
memory access.

A naive implementation iterates through the image
and interpolates the missing pixel values differently
depending on the four possible locations in the Bayer
grid. In order to avoid branching, a thread relocation
mechanism was implemented which is illustrated in
Figure 4. It changes the relationship between a pixel
and the thread which does the interpolation. Normal-
ly, a thread would be responsible for interpolating the
RGB values for a pixel matching the thread’s posi-
tion in the 2D grid. Neighboring threads would then

be executed at the same time sharing the same in-
struction counter. In this situation, the different
branching of the threads would lead to a serial execu-
tion and low performance. Relocating the threads so
that those corresponding to pixels with matching lo-
cation on the color filter array are executed simulta-
neously avoids branching. For example, in the Figure,
every thread in block 4 can now calculate its blue
component from its left and right neighbors.

5.3. Color conversion, tone mapping, normalization

Color space conversion, as well as applying the
tone mapping operator and image normalization, are
ideally suited for a GPU implementation since they
fully comply with the data parallelism paradigm [5].
No branching takes place as each element is treated
in the same way. Each image pixel is read and writ-
ten exactly once. Additionally, all three operations
have a high arithmetic intensity caused by the multi-
plication and addition of pixel values.

We limit our description here to the parallel im-
plementation of color conversion. The same also ap-
plies to using a global tone mapping operator and to
image normalization. The implementation of the ker-
nel for color conversion from RGB to XYZ is the
translation of a color conversion matrix into code.
Again, one thread is started per pixel. The RGB val-
ues for the conversion are read from the pixel corre-
sponding to the thread. These values are multiplied
by the color transformation matrix. The resulting
XYZ vector is then normalized to obtain the chroma-
ticity xy and the brightness Y. These values are writ-
ten back to the three channels of the pixel in the out-
put image. Afterwards, the result can either be passed
on to the next kernel (e.g., image registration), or it
can be displayed in the case of the final back conver-
sion to RGB.

Fig. 3. Normalized cross correlation between two column histograms H1 and H2 to determine the horizontal shift s between two images. A
thread is started for each value in the result vector to be calculated. The values represent the correlation for a specific shift.

5.4. Brightness histogram

During the creation of a brightness histogram, data
must be written to a small set of memory addresses
(the histogram bins) for all of the pixels. This induces
a certain data dependence and leads to thread colli-
sions and sequential writing. Additionally, there is
very little computational work between the memory
accesses. Despite these difficulties, it was considered
for a GPU implementation because it is a costly op-
eration overall. Our implementation is similar to the
one proposed in [5].

The image over which the histogram is computed
is first subdivided into rectangular areas of size 32 ×
64 pixels. To calculate a histogram, each block has to
perform 2048 read and write operations on the histo-
gram bins in global memory. This would take many
clock cycles, and the operations would be strictly
serial. Instead, the paradigm of parallel reduction is
applied. That is, histograms for small image areas are
created first and then successively merged into one
final histogram over the entire image. 32 threads are
started per block. Each thread computes a separate
histogram with 64 bins over one row of the block
which is written to the fast shared memory. The his-
togram has only 64 bins for efficiency purposes. In-
terleaving of the histograms in shared memory such
that a whole histogram resides on the same memory
bank allows for conflict-free memory access by the
threads, and true parallelism can be achieved. The
banks of shared memory and the way the histograms
are stored is illustrated in Figure 5.

Next, the 32 histograms of the block are summed
up into a single histogram for the block. Since the
content of the shared memory expires when the

threads terminate, the same 32 threads must be re-
used for summation. Each thread is assigned two bins
of the total histogram. It loops through the 32 histo-
grams (vertically in Figure 5) and maintains two
sums. It must be noted that each histogram resides on
its own memory bank. If all threads started with the
first histogram, the 32 read operations to the same
bank would be serialized, leading to bad performance.
Instead, summation loops start with a different histo-
gram for each thread (shifted by one relative to its
predecessor thread). Like this, all summations can be
done in parallel without bank conflicts. The final
sums (i.e., the histogram for the block) are then writ-
ten to global memory by an atomic add function pro-
vided by CUDA.

With this approach, the number of write operations
to global memory is reduced from 2048 to 64 per
block. Pixel data is read from global memory as a
texture which allows for efficient caching.

5.5. Median computation

There exist parallel sorting algorithms, so the
problem of finding the median of a histogram can be
parallelized. However, the problem size of searching
through a number of histogram bins is too small to
justify the effort.

5.6. Row and column histograms

The creation of a mean threshold bitmap can be
viewed as an intermediate step to the computation of
row and column histograms. Both operations have a
low arithmetic intensity. The creation of a threshold

Fig. 5. Simplified illustration of shared memory with 8 memory
banks and 64 addresses. Consecutive addresses lie on consecutive
banks. The histograms are interleaved such that each lies on its
own bank. Eight threads can write concurrently.

Fig. 4. Each pixel is assigned one thread to interpolate its RGB
values from the surrounding. The threads with the same number
belong to the same block and are executed at the same time. This
leads to threads with different colors in their neighborhood running
simultaneously, and branching becomes necessary. After relocating
the threads, each thread in the block can interpolate in the same
way.

bitmap has high parallelism as each pixel can be con-
verted separately. Computation of row and column
histograms brings up a similar issue as brightness
histogram computation: An entire row/column ac-
cesses the same histogram bin. However, in this case,
this access is predictable and can be optimized.

For the registration of an image pair, a total of
eight row or column histograms are created. All his-
tograms are calculated separately by similarly im-
plemented method calls. On a GPU, this is more effi-
cient than running one parameterized method with
code branching. For simplicity, only the creation of a
column histogram counting black pixels for every
column of an image is described here.

The image is subdivided into blocks of 32 × 32
pixels. This time, one thread is started for each pixel
in the block. Each thread computes the thresholded
value of its respective pixel, that is, the thread checks
if its pixel is darker than the threshold and writes a 1
into shared memory if it is. The mean threshold bit-
map is thus created in shared memory only. Care is
taken that the set of 32 threads that are executed con-
currently on a multiprocessor write the bit to 32 sepa-
rate memory banks. Pixel data is again read from
global memory as a texture. 32 of the threads are then
re-used to count the black pixels of each column.
Each thread is assigned one of the columns of the
block. The thread loops through all rows to count the
1s in shared memory. An entire row resides in the
same memory bank (see Figure 5). So, in order to
prevent bank conflicts, the threads each start count-
ing from a different row so that all 32 read operations
can be done in parallel. The sum of black pixels in a
column is then added to the column histogram in
global memory using an atomic add operation.

5.7. Kalman filtering

Filtering only takes about 16 μs on a CPU, so its
computational effort is negligible and thus left on the
CPU.

5.8. HDR stitching

HDR stitching complies well with the data paral-
lelism paradigm. The radiance value of each HDR
pixel can be obtained independently without a need
for synchronization. The arithmetic intensity of this
operator is high due to the addition and multiplica-
tion of pixel values and the evaluation of the
weighting function.

HDR stitching cannot use the GPU’s texture cache
to access the LDR exposures to be stitched. This is
because the CUDA compiler needs to know the
number of texture cache bindings in advance before
compilation; however, the number of LDR exposures
is dynamically chosen. Depending on the parameters
of the shutter speed selection algorithm [10], a large
and unbounded number of images may need to be
captured. Furthermore, due to the way we capture
exposures [12], their size may vary in each frame.

The LDR sequence can be viewed as a 3D stack of
images with varying size. This stack of images re-
sides in the global memory of the GPU. One thread is
started for each HDR pixel which iterates through the
corresponding pixels in the stack of exposures and
calculates the weighted average. During one iteration,
the current radiance and chrominance values and the
cumulated weight of all pixels must be held in local
memory (registers). The radiance and the two chro-
minance values are then written to the output image
in global memory as floating point values. Contrary
to the CPU version, the GPU implementation does
not precalculate the weighting function or stores it in
memory. Experiments showed that calculating only
the required weights on the fly is cheaper than ac-
cessing the precalculated array from all threads.

5.9. Minimum, maximum, and average

Calculating a cumulative log radiance histogram
for tone mapping starts by finding the minimum and
maximum log radiance in the HDR image. This is
similar to calculating the average image brightness
for flicker reduction. By employing so-called parallel
reduction, these processing steps can be made paral-
lelizable to some extent. The arithmetic intensity is
low, because very little computational work is done
between the memory accesses. We implemented it
for the GPU, because it is a costly operation overall.

To illustrate parallel reduction, we describe the
calculation of the maximum of a one-dimensional
array here. This technique is applied to the calcula-
tion of the minimum, maximum and average of the
pixels in an image.

Parallel reduction is an iterative divide-and-
conquer approach. In the first iteration, one thread is
started for each element in the array. Each thread
calculates the (trivial) maximum of the element,
which is simply the element itself, and writes it to
shared memory. Every other thread is then discarded.
In the next iteration, the remaining threads calculate
the maximum of their element and its neighbor and

again write it to shared memory. In each iteration, the
number of threads is halved, and maxima are com-
bined with their neighbors. This is repeated until only
one global maximum is left which can then either be
written to global memory or copied back to the host
system.

5.10. Cumulative log radiance histogram

The same considerations as for general brightness
histograms described above apply to the computation
of the cumulative log radiance histogram. The only
exception is the summing up of the histogram bins. It
has negligible computational costs and does not re-
quire a GPU implementation.

6. Experimental results

The following performance aspects of the HDR
video system were assessed:

 processing times of the subtasks of the HDR

pipeline when changing the image size,
 processing times when changing the number of

exposures,
 average capturing and processing times in a 30

seconds HDR video under realistic conditions,
 comparison of CPU and GPU processing times.

The individual subtasks were grouped together as

seen fit for the analysis. Displaying the processed
video frames means copying them into the memory
of the graphics card. Since the last step in the pipe-
line – color conversion from Yxy back to RGB – is
performed on the GPU anyway, displaying the result
is a free operation and thus ignored in the following.

For all experiments, a desktop PC was used which
is equipped with an AMD Athlon II X2 250 64-bit
CPU with two cores running at 3 GHz and a total of
4 GB of RAM. The installed graphics card is an
Nvidia GeForce GTX 480 with 15 multicores run-
ning at a clock rate of 1.4 GHz and 1.5 GB of dedi-
cated memory. Each multicore can process 32
threads at once. The used camera is an AVT Pike F-
032C FireWire camera capable of capturing 208
frames per second in VGA resolution. It uses a Bayer
color filter array to acquire color images.

The computation time of most of the steps in the
HDR pipeline depends on the size of the images. In
the experiment described here, the relationship be-
tween processing time and image size is analyzed.
Most parts of the GPU implementation are optimized

specifically for the image width of 640 pixels.
Changing this in the implementation would bias the
results of this test. However, different image heights
were considered in the implementation to accommo-
date the outputs of the employed capturing method.
This fact is used to investigate the relationship be-
tween image size and processing time. The images in
this experiment all had the full width of 640 pixels
and a height varying from 100 to 480 pixels.

For each size, a sequence of five exposures was
captured once and processed 20 times by the entire
HDR pipeline to obtain stable average processing
times. The steps from Bayer pattern interpolation to
the computation of row and column histograms were
thus performed five times in each iteration, cross
correlation and filtering was done four times, and
HDR stitching needs to take five exposures into ac-
count. All the subsequent steps work on just one
HDR image.

The content of the images has no significant influ-
ence on the processing times. The shutter speeds
were thus set to an arbitrary value that exposes the
recorded indoor scene well. Most steps of the pipe-
line depend on the image size in an obvious way as it
influences the number of pixels or blocks to process.
Only the processing steps of shutter speed computa-
tion and Kalman filtering are completely unaffected.
Figure 6 shows the measured processing times versus
image height. Debayering and the initial color con-
version are grouped together. Excluding apparent
measurement noise, the computation times of the
pipeline steps grow linearly in the number of pixels,
as expected.

Fig. 6. Processing time versus image height for a fixed number of 5
exposures. The two solid lines are image registration (blue) and
color conversion (red). They both use the left scale ranging from 0
to 6 ms. The dashed lines use the right scale. They are tone map-
ping (blue), HDR stitching (red) and color back conversion (green).

Now, the image size is kept at its maximum of 640
× 480 pixels and the number of LDR exposures is
varied instead. The only steps that need to process a
varying number of exposures are color conversion
from RGB to Yxy, Bayer pattern interpolation, image
registration, and HDR stitching. The initial color
conversion and debayering are again grouped togeth-
er. In order to perform registration, at least two imag-
es must be present in the sequence. The number of
exposures thus varies from two to ten and, again, the
measurement was repeated 20 times on the same se-
quence for a stable average. The shutters were chosen
to match the given scene. Figure 7 shows the meas-
ured processing times versus the number of expo-
sures. Again, the dependency is linear, as expected.

For the final test, 30 seconds of HDR video mate-
rial was captured in a realistic scenario using the
HDR video system. The camera was situated inside a
room illuminated only by sunlight shining through a
window on a sunny day. During the 30 seconds, the
camera pans from the bright window towards the
darker room and eventually towards a door leading to
an even darker hallway. The video thus includes very
bright, very dark, and mixed lighting conditions. It
consists of 733 HDR frames. Averaged over the en-
tire video, an HDR frame was created from 3.62
LDR exposures. On the average, 29.8 ms per frame
were spent for capturing and 13.6 ms for processing.
This results in a total time per frame of 43.4 ms and
an average frame rate of 23 fps.

The time to create an HDR frame from beginning
to end is more closely inspected in Figure 8. The top
left chart shows the fractions of the computation time
of the steps of the HDR pipeline. Color conversion
from RGB to Yxy, back to RGB and debayering is
grouped together. The other sub-figures show how

computation time is further divided among the sub-
tasks for color conversion, image registration, and
tone mapping.

For comparison, the entire video was processed
again using a fully optimized CPU implementation.
The computation times were now 56 ms for color
conversion, 24 ms for image registration, 43 ms for
HDR stitching and 80 ms for tone mapping. This
leads to an average processing time of 203 ms per
frame. The GPU implementation is thus faster by a
factor of 15 on the average.

7. Conclusions

This article presented the GPU implementation of
a high dynamic range video system. It gave an over-
view of the system and outlined the major steps from
capturing to display of an HDR frame. Before paral-
lelizing the HDR pipeline, it was analyzed for neces-
sity and feasibility of a parallel implementation. The
main decision criteria were computational cost,
arithmetic intensity and the amount of data parallel-
ism of the subtasks. The HDR algorithms had to un-
dergo modifications to make them suitable for execu-
tion on a GPU.

The performance of the GPU implementation was
evaluated using 30 seconds of HDR video captured
in real-time under realistic conditions. The system
achieved a frame rate of 23 frames per second. It is
thus fast enough for real-time HDR video. Compared

Fig. 7. Processing time versus number of exposures for full images.
Only those steps that process multiple LDR exposures are consid-
ered.

Fig. 8. Percentage of the time taken to perform the steps of the
HDR pipeline in the test video. The steps of color conversion,
image registration, and tone mapping are further subdivided into
their individual tasks.

to the CPU implementation, a speedup by a factor of
15 was achieved.

The experiments showed that after parallelization,
the bottleneck now lies in capturing of the exposure
sequence. 69% of the time taken to create an HDR
frame was spent for capturing. In order to increase
the frame rate further, it is sensible to focus on image
capturing next. Possible improvements could be us-
ing a bigger lens to allow for shorter shutter speeds,
stronger decoupling of capturing and processing or
employing different capturing hardware.

References

[1] M. Amamiyaa, H. Tomiyasua, R. Taniguchia, P. Kacsukb and
Z. Nemethb, Multithreaded architecture for multimedia pro-
cessing, Integrated Computer-Aided Engineering 7(1), 2000.

[2] F. Amiot and E. Pissaloux, Towards vision application adapt-
able parallel computer, Integrated Computer-Aided Engineer-
ing 8(4), 2001.

[3] A. Benoit, D. Alleysson, J. Herault, P. Callet, Spatio-temporal
Tone Mapping Operator Based on a Retina Model, Springer,
2009.

[4] T. B. Borchartt, et al., on the reproduction of cloud influence in
natural and aerial images, IWSSIP, 2011.

[5] G. J. van den Braak, C. Nugteren, B. Mesman, H.Corporaal,
GPU-Vode: a framework for accelerating voting algorithms
on GPU, Euro-Par Parallel Processing, 2012.

[6] L. Carro-Calvo, S. Salcedo-Sanz, E. G. Ortiz-García, A. Por-
tilla-Figueras, An incremental-encoding evolutionary algo-
rithm for color reduction in images, Integrated Computer-
Aided Engineering 17(3), 2010.

[7] P.E. Debevec and J. Malik, Recovering high dynamic range
radiance maps from photographs, in Proc. of the 24th Confer-
ence on Computer Graphics and Interactive Techniques, 1997.

[8] B. Guthier, S. Kopf, and W. Effelsberg, Histogram-based
image registration for real-time high dynamic range videos, in
Proc. of IEEE International Conference on Image Processing
(ICIP2010), 2010.

[9] B. Guthier, S. Kopf, M. Eble, and W. Effelsberg. Flicker re-
duction in tone mapped high dynamic range video. In Proc. of
IS&T/SPIE Electronic Imaging (EI) on Color Imaging XVI:
Displaying, Processing, Hardcopy, and Applications, volume
7866, 2011.

[10] B. Guthier, S. Kopf, W. Effelsberg, Optimal Shutter Speed
Sequences for Real-Time HDR Video, Int. Conf. on Imaging
Systems and Techniques (IST), 2012.

[11] B. Guthier, S. Kopf, W. Effelsberg, Parallel Algorithms for
Histogram-based Image Registration, IWSSIP, 2012.

[12] B. Guthier, S. Kopf and W. Effelsberg, Algorithms for a real-
time HDR video system, Pattern Recognition Letters, 2012.

[13] S. Hasinoff, F. Durand, W. Freeman, Noise-Optimal Capture
for High Dynamic Range Photography, in: Proc. of the 23rd
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2010.

[14] International Telecommunication Union (ITU), Basic Pa-
rameter Values for the HDTV Standard for the Studio and for
International Programme Exchange, ITU-R Recommendation
BT.709, 1990.

[15] S. B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, High
dynamic range video, ACM Transactions on Graphics (TOG)
22 (3), 2003.

[16] G. Krawczyk, K. Myszkowski, D. Brosch, HDR Tone Map-
ping, Springer Series in Advanced Microelectronics (26),
Springer, 2007.

[17] L. Lattari, A. Montenegro, A. Conci, E. Clua, V. Mota, M.
Bernardes Vieira and G. Lizarraga, Using graph cuts in GPUs
for color based human skin segmentation, Integrated Comput-
er-Aided Engineering 18(1), 2011.

[18] M. McGuire, Efficient, high-quality bayer demosaic filtering
on GPUs, Journal of Graphics, GPU and Game Tools, vol. 13
(4), 2008.

[19] A. Oppenheim, R. Schafer, and T. Stockham, Nonlinear filter-
ing of multiplied and convolved signals, Proc. IEEE vol. 56,
pp. 1264-1291, 1968.

[20] R. del Riego, J. Otero and J. Ranilla, A low-cost 3D human
interface device using GPU-based optical flow algorithms, In-
tegrated Computer-Aided Engineering 18(4), 2011.

[21] M. A. Robertson, S. Borman, R. L. Stevenson, Estimation-
theoretic approach to dynamic range enhancement using mul-
tiple exposures, Journal of Electronic Imaging 12 (2), 2003.

[22] S. Ryoo et al., Optimization principles and application per-
formance evaluation of a multithreaded GPU using CUDA,
Prof. of the PPoPP, pp. 73-82, 2008.

[23] M. D. Tocci, C. Kiser, N. Tocci, and P. Sen, A versatile HDR
video production system. ACM Trans. Graph. 30 (4), Article
41, 2011.

[24] G. Ward, H. Rushmeier, and C. Piatko, A visibility matching
tone reproduction operator for high dynamic range scenes.
IEEE Transactions on Visualization and Computer Graphics,
3(4), 1997.

[25] G. Ward, Fast, robust image registration for compositing high
dynamic range photographs from hand-held exposures, Jour-
nal of Graphics Tools: JGT, vol. 8, no. 2, 2003.

