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ABSTRACT
In this paper, we present a novel technique for seam carving of ste-
reoscopic video. It removes seams of pixels in areas that are most
likely not noticed by the viewer. When applying seam carving to
stereoscopic video rather than monoscopic still images, new chal-
lenges arise. The detected seams must be consistent between the
left and the right view, so that no depth information is destroyed.
When removing seams in two consecutive frames, temporal con-
sistency between the removed seams must be established to avoid
flicker in the resulting video. By making certain assumptions, the
available depth information can be harnessed to improve the quali-
ty achieved by seam carving. Assuming that closer pixels are more
important, the algorithm can focus on removing distant pixels first.
Furthermore, we assume that coherent pixels belonging to the same
object have similar depth. By avoiding to cut through edges in the
depth map, we can thus avoid cutting through object boundaries.
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1. INTRODUCTION
Stereoscopic videos are becoming increasingly popular with mo-

re and more stereoscopic devices coming to the consumer market.
Examples for these devices include TV screens, portable gaming
consoles, smartphones, and video cameras. With the diversity of
the available devices also comes the problem that the stereoscopic
content does not fit all displays equally as it has a fixed resolution
and aspect ratio. Therefore, the videos have to be adapted to fit the
different screens. This process is called retargeting or resizing and
is a research area that is well explored for 2D images and video.

This is not the case for stereoscopic content. While there are al-
gorithms for the automatic resizing of stereoscopic images [2, 13],
to our knowledge there are no approaches for video yet that go
beyond cropping or linear scaling.

In this paper, we propose a content-aware algorithm for the au-
tomatic resizing of stereoscopic video based on seam carving [1].
For our method, we assume that the left and the right view of a
video are given. The disparity map – the mapping between pixels
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in the left and the right frame – is calculated using existing algo-
rithms [4]. In our approach, seams are searched in the left view and
the disparity map simultaneously to preserve the depth informati-
on as well as possible. For temporal consistency, the seams from
the previous frame are used as a reference for searching seams in
the current frame. Figure 1 shows an example frame that has been
adapted with our new algorithm.

The seam carving method for stereoscopic video presented in
this paper focuses on the following:

• Consistency between the seams in the left and the right frame
to preserve depth information.

• Temporal consistency between the seams in two consecutive
video frames to avoid flicker.

• Use of depth information to preserve closer objects and to
prevent cutting through object boundaries.

The outline of this paper is as follows: Section 2 presents the
current state of the art of 2D video retargeting and stereoscopic
image resizing. Our algorithm is described in detail in Section 3.
Its achieved quality is evaluated in Section 4. Section 5 concludes
the paper and discusses future work.

2. RELATED WORK
Retargeting or resizing describes the process of adapting an image

or video to a different display resolution or aspect ratio. This pro-
cess is well explored for 2D media [8, 7] and is a hot topic for
stereoscopic media. Seam carving is one of the most prominent
techniques and has been picked up by a lot of other researchers [2,
1, 12, 3, 9, 5, 13, 11, 6]. In the following, we give an overview of
current 2D video retargeting and stereoscopic image resizing algo-
rithms, starting with a short recap of the original seam carving.

2.1 Seam Carving for Images
Seam Carving is a technique for the content-aware retargeting of

images and was first introduced by Avidan and Shamir [1]. A seam
is a connected path of pixels from top to bottom or left to right. An
energy function is used to evaluate the importance of each pixel in
the image and the optimal seam is chosen which contains the pixels
with the lowest overall energy. Each seam can then be removed or
duplicated to reduce or extend the size of the image by one column
or row.

2.2 Retargeting of 2D Videos
Rubinstein et al. extended the seam carving approach to the re-

sizing of video [12]. As they represent a video as a 3D spatial/time
video cube, dynamic programming is no longer an option to solve
the complex minimization. Instead, graph cuts are used as a repla-
cement. Also, they introduce forward energy which measures the
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Figure 1: Example frame from the stereo sequence ”office” that has been adapted by our new algorithm. The frames are shown in
the anaglyph (red/cyan) format. Left: Original frame. Middle: Disparity map of the frame. Right: Result.

energy that will be inserted by removing a seam rather than the
energy that is deleted with the seam. Forward energy is used in
many other seam carving approaches, including ours.

A central aspect in the seam carving algorithm is the constraint
that the pixels of a seam have to be connected. In the approach by
Grundmann et al., seams are allowed to be spatially and temporally
disconnected [3]. This gives the seams more flexibility and enables
them to avoid crossing important objects. Additionally, a new tem-
poral coherence measure is proposed that allows a frame-by-frame
computation with only the previous frame needed as reference. We
borrow this temporal coherence measure for our approach.

In our own previous work, we developed two algorithms for the
retargeting of videos based on seam carving [9, 5]. In [9], the fra-
mes of a shot are aligned to create a so called background image.
Seams are searched in this image and then transformed back to the
individual frames. This way, the temporal coherence of the scene
is preserved. Also, this algorithm is faster than seam carving with
graph cuts [12] as its computational complexity is much lower.

The second work is a combination of seam carving and crop-
ping called SeamCrop [5]. First, the potential borders of a cropping
window with the target size are searched in the frames. Then, these
borders are slightly extended and the content in between is reduced
back to the target size by seam carving.

Aside from seam carving, there are other popular methods for
video resizing. One example is warping. This technique describes
the process of scaling an image or video non-homogeneously in
order to preserve the important parts while distorting the other re-
gions. Krähenbühl et al. present a warping-based approach for the
retargeting of streaming video [10]. In contrast to most approaches
where the warp is done by the deformation of a coarser mesh, Krä-
henbühl et al. compute the minimization with pixel accuracy. For
the energy function, automatically detected saliency is combined
with high level features that are interactively annotated by a user
via key frame editing.

Wang et al. try to make video retargeting more scalable [14].
Their algorithm is separated into a spatial and a temporal compo-
nent that can be computed sequentially, avoiding a complex global
optimization. In the first step, warping is used on each frame sepa-
rately. After that, motion path lines of pixels in the optical flow are
identified and optimized. This information is used when the retar-
geting is repeated in the last step in order to improve the results. To
further enhance the results, cropping is also added to the resizing
process.

2.3 Retargeting of Stereo Images
The retargeting of stereoscopic images is more difficult than the

resizing of monoscopic media. This is because of the complexity
added by the second view and the requirement of consistency bet-
ween the views to preserve the depth information.

Utsugi et al. adapt the seam carving algorithm to stereo images

[13]. They introduce new energy criteria which take the right view
into account while calculating the seams on the left view. The se-
ams are then carried over to the right view by using the disparity
map. Their energy map includes a color mismatch between the cor-
responding pixels of the two views. A penalty is added for seams
that become discontinuous after mapping them to the right view.
Only vertical seams are considered.

A different approach is taken by the scene carving algorithm by
Mansfield et al. [11]. While technically not using seam carving on
stereo images, they resize images with the additional information
of a relative depth map provided by the user. With this depth map,
the image is segmented into several depth layers containing either
the background or the objects of the image. In the result, the objects
keep their depth ordering, but may be rearranged with regard to the
scene consistency. This also includes the introduction of occlusions
into the image, as the salient objects are not allowed to be distorted.

Most recently, another seam carving algorithm for reducing the
width of stereo images was presented by Basha et al. [2]. It jointly
uses the information provided by both views for the computation of
the energy map. The views are mapped onto each other by the dis-
parity map. Their energy function considers forward energy [12]
in both images as well as 3D energy. The latter is composed of
forward energy in the disparity map, energy computed from depth
and the confidence of the disparity estimation. It is the 3D energy
we use in our work. Furthermore, Basha et al. use disparity to de-
tect pixels that are occluded in one of the views or are occluding
other pixels. These pixels are never removed from the image, i.e.,
the seams avoid them. Assuming correctness of the disparity map,
avoiding occluded and occluding pixels preserves depth informa-
tion. We found, however, that the high false detection rate when
dealing with noisy disparity forces the seams to take sub-optimal
paths through the scene too often. This leads to seams that jump
from one frame to the next to avoid removing erroneously detec-
ted occluded pixels, which is visible as flicker when applying the
approach to video.

To our knowledge, there is currently no work published on the
resizing of stereoscopic video that goes beyond cropping the bor-
ders or uniform scaling.

3. SEAM CARVING FOR STEREO VIDEO
In this Section, we introduce our algorithm for seam carving of

stereo video. The input to our algorithm is a video sequence consis-
ting of left frames IL

t (x, y) and right frames IR
t (x, y). Since most

of the processing is done on one frame at a time, the frame index
t is dropped in the following unless needed for clarification. Each
frame of the input sequence is of size w × h. We retarget the video
by removing vertical seams to reduce the width of each frame. In
this work, a bar over a mathematical symbol is used to denote that
it is a result after removing one or more seams. The output of our
algorithm is a video sequence of left and right frames ĪL

t (x, y) and



Figure 2: The blue squares are pixels that belong to a detected
vertical seam. Removing the seam pixels from the image shifts
the entire remainder of the row left by one pixel. This reduces
the width of the image by one (see grey pixels).

ĪR
t (x, y) with reduced width. Their size is now w̄ ×h. This is done

by removing one seam after another. Our description is thus limited
to removing one seam at a time. In order to reduce the image width
from w to w̄, this process is iterated w − w̄ times. Each pair of left
and right frames of the video sequence is processed individually.
The only exception is that seams carry over from the previous fra-
me in order to achieve temporal consistency. This is described in
detail later.

A frame is retargeted in a number of steps. The process starts by
computing a disparity map between IL and IR to establish pixel
correspondence among the views. This needs to be done only on-
ce for the frame pair. All other steps are repeated for each of the
seams. An energy function is computed for the current frame that
incorporates knowledge from both views at once. The energy va-
lue of a pixel represents its importance in the image; low energy
pixels are removed first. A pixel’s energy value depends on a large
number of factors including local contrast, depth and its location
with respect to seams in the previous frames. The energy values are
accumulated row by row to calculate an accumulated energy map.
Based on this map, seams of pixels with low energy are detected
and removed from the two views. In the last step, the seam is also
removed from the disparity map and disparity values are updated.
The entire process is then repeated until the target width is reached.

The disparity map is a mapping between the pixels of the left
view and the right view. For each pixel position (x, y) in the left
view, the disparity value D(x, y) states by how many pixels it is
shifted to the left in the right view. As such, the disparity map esta-
blishes a correspondence between left and right pixels:

IL(x, y) ≈ IR(x − D(x, y), y) (1)

In our implementation, disparity values range between 0 and 16
(the unit is pixel width). Higher values mean that the pixel is closer
to the camera. Far away objects have roughly the same position in
both images. The disparity for far pixels is thus close to zero. We
use semi-global block matching to compute the disparity map [4].

Our approach is focused on finding and removing vertical seams
in a stereo pair. Unless explicitly noted otherwise, we are always
referring to seams in the current frame. A vertical seam consists of
exactly one x coordinate for each row in an image. It is a function
of y. Removing a seam means deleting the seam pixel in each row
and shifting all pixels to the right of the seam left by one. This re-
duces the width of the image by one as illustrated in Figure 2. More
formally, the i–th detected vertical seam Si(y), i = 1, . . . , w − w̄
in a frame is a function mapping each row index y to an x coor-
dinate between 0 and w − i. The removal of seam Si reduces the
width of the frame from w− i+1 to w− i. We distinguish between
seams in the left and the right view by using the superscripts L and

Figure 3: The blue squares are pixels belonging to a seam. After
removing it, the pixels labeled a through e change their neigh-
bors. The affected sides of the pixels are marked in red. In this
example, the forward energy is |d − e| + |a − c| + |b − d|.

R. The pair of seams is connected by the disparity map:

SR
i (y) = SL

i (y) − D(SL
i (y), y) (2)

3.1 Energy Function
The energy value of a pixel denotes its importance in the image.

It is determined from a large number of factors which are outlined
in this Section. Some components of a pixel’s energy do not only
depend on the pixel itself, but also on seam pixels in the row abo-
ve. Because of this dependency, it is not efficient to precompute
and store energy values. They are instead represented as an energy
function which is evaluated as needed. In our approach, the energy
function is composed of appearance energy Eapp, disparity energy
E3D , and temporal energy Etemp. Appearance energy measures
edges in the intensity image that are introduced when removing a
pixel. Disparity energy takes into account the removal of seams in
the disparity map, as well as the depth of a pixel. Temporal ener-
gy helps to achieve temporal consistency by giving a higher energy
to pixels that are far away from the seams of the previous frame.
These three components are summed up to a total energy E:

E(x, y, x̂) = α1Eapp(x, y, x̂)+α2E3D(x, y, x̂)+α3Etemp(x, y)

Total energy is a function in three variables: x and y coordinate
of the pixel and the horizontal location x̂ of the seam pixel in the
row above. This is explained in more detail later. Throughout this
Section, the hat over a symbol is used when referring to values in
the previous row or previous frame. The α are weights for the three
different types of energy. In our implementation, pixel intensity and
disparity values are normalized to [0..1] when used in the energy
function. We use α1 = 5, α2 = 0.5, and α3 = 0.1.

3.2 Appearance Energy
When removing seams from the left and right frames, pixels that

were originally separated by the seam may become adjacent (see
Figure 2). This may introduce noticeable edges into the frames,
which is generally undesirable. The effect of introducing new ed-
ges into the frames by removing seams is measured by appearance
energy. In the literature, this is known as forward energy [12]. It is
computed on the intensity values of the frames.

The appearance energy Eapp(x, y, x̂) at a pixel position (x, y)
depends not only on the pixel position itself, but also on the hori-
zontal position x̂ of a potential seam pixel in the row above (x̂, y −
1). This is illustrated in Figure 3. Depending on which pixel in the
row above ends up being part of the same seam, a different set of pi-
xels become adjacent, introducing different new edges. In Figure 3,
the pixels labeled a through e change their neighbor after removing
the seam.



Seam pixels do not need to be diagonally connected. In the case
of stereo frames, there are situations where the seam may need to
become discontinuous. The pixels of the seams in the left and the
right view are connected by the disparity map as shown in Equation
2. If a seam crosses the border of an object that is closer or further
away, the disparity value changes from one seam pixel to the next.
One of the seams thus inevitably becomes discontinuous. As a con-
sequence, Eapp must be defined in a way that allows to compute it
for an arbitrary distance between x and x̄.

Appearance energy is composed of two parts:

Eapp(x, y, x̂) = Ehor(x, y) + Ever(x, y, x̂)
They are horizontal (Ehor) and vertical energy (Ever). When a pi-
xel at (x, y) is removed, its left and right neighbors become adja-
cent, introducing a new edge. This is measured by horizontal ener-
gy which is simply the difference between the intensities of the left
and the right neighbor:

Ehor(x, y) = |I(x − 1, y) − I(x + 1, y)|
If x �= x̂, removing a seam causes a shift between rows y − 1

and y over the length of |x − x̂|. In Figure 3, pixels ac and bd
become adjacent and new edges are introduced between them. This
is measured by vertical energy:

Ever(x, y, x̂) =

⎧⎪⎪⎨
⎪⎪⎩

x∑
k=x̂+1

|I(k, y − 1) − I(k − 1, y)| if x̂ < x

x̂∑
k=x+1

|I(k − 1, y − 1) − I(k, y)| if x̂ > x

Eapp(x, y, x̂) is computed once for the pixels in the left frame
and once for the right frame. The horizontal pixel positions x and
x̂ are mapped into the right frame by subtracting the disparity. Like
this, the appearance energy is calculated for the left and the right
view simultaneously. The final value for Eapp(x, y, x̂) is then ob-
tained by adding the energy values of the two corresponding left
and right pixels.

3.3 Disparity Energy
Detected seams are not only removed from the left and right

views, but also from the disparity map. Similar to the forward ener-
gy in intensity images, removing seams in the disparity map also
introduces undesirable edges. Furthermore, the disparity map gives
clues about the importance of pixels. We make the assumption that
objects that are closer to the viewer are more relevant and should
be less likely to be removed. These criteria are incorporated into
the disparity energy E3D . It is composed of forward energy in the
disparity map Edisp, the distance of a pixel from the camera Edist,
and the confidence of the disparity estimation Econf :

E3D(x, y, x̂) = Edisp(x, y, x̂) + α4Edist(x, y) + α5Econf (x, y)
This definition of disparity energy is similar to the one in [2].

Disparity is normalized to values between 0 and 1, and we chose
the weights to be α4 = 0.1 and α5 = 1.

Edisp(x, y, x̂) is defined in the same way as Eapp above, except
that it is computed over the disparity map instead of the intensity
image. Objects that are closer to the camera have a higher disparity.
The energy from object distance Edist is thus simply defined as
normalized disparity:

Edist(x, y) = D(x, y)
The estimation of the disparity map may be noisy and contain er-

rors. In order to cope with noisy measurements, we include Econf

into the disparity energy, which represents the confidence in the
disparity measurement at a pixel. For a good disparity value, the
two sides of Equation 1 only differ by a small amount. If the dif-
ference is large for two pixels (x, y) and (x − D(x, y), y) in the
left and right views, respectively, it is likely that D(x, y) is erro-
neous. The confidence in the disparity estimation is thus defined as
the difference between the left and the right pixel:

Econf (x, y) = |IL(x, y) − IR(x − D(x, y), y)|

3.4 Temporal Energy
When applying seam carving frame by frame to a video, the se-

ams take a different path in every frame. This introduces artificial
motion into the frame which is perceived as a disturbing flicker ar-
tifact. To avoid flicker, it is necessary to make sure that seams do
not differ from the seams in the previous frame by too much. This
is done by adding temporal energy to the energy function as was
shown in [3]. During the detection of the i-th seam in the current
frame, the temporal energy Etemp for a pixel measures by how
much the result differs if this pixel is removed instead of removing
the i-th seam of the previous frame again.

More formally, when computing the i-th seam SL
i (y) in the left

frame at time t, the i-th seam in the left frame at time t − 1 is taken
into account. This seam in the previous frame is denoted by ŜL

i (y).

If the exact same seam ŜL
i (y) was used again as the i-th seam of the

current left frame IL
t , the resulting frame after removing the seam

would be ÎL
t . Row y of frames IL

t and ÎL
t are shown on the right

side of Figure 4. Frame ÎL
t would have perfect temporal consisten-

cy, because the same pixels as in the previous frame were removed.
For each pixel position (x, y) in the left frame, the temporal energy
EL

temp(x, y) is thus computed as the difference between frame IL
t

as if it were carved by a seam going through pixel (x, y) and the

perfectly consistent frame ÎL
t . Removing a seam pixel at position

(x, y) in frame IL
t means that all pixels to the right of x are shifted

left by one. Hence, EL
temp is defined as:

EL
temp(x, y) =

x−1∑
k=0

|IL
t (k, y) − ÎL

t (k, y)|

+
w−i+1∑
k=x+1

|IL
t (k, y) − ÎL

t (k − 1, y)|

In Figure 4, ŜL
i (y) is greater than x, so all pixels up to x − 1

are identical in the two images IL
t and ÎL

t . This means that the first
sum is zero. The second sum of differences is shown as diagonal
arrows in the figure. It only has ŜL

i (y) − x nonzero terms.

Analogously to the left frame, the i-the seam ŜR
i (y) of the pre-

vious right frame is used on the current right frame IR
t to produce

a right frame ÎR
t with perfect temporal consistency. ER

temp is then
computed in the same way for the right view by mapping x into the
right frame by subtracting the disparity D(x, y). Total temporal
energy Etemp is then obtained by adding the values of both views:

Etemp(x, y) = EL
temp(x, y) + ER

temp(x − D(x, y), y)

3.5 Finding and Removing Seams
After fully defining the energy function, it can be used to de-

tect and remove seams with low energy in the video frames. This
is done in the following steps. The energy function is accumulated
row by row and stored as an accumulated energy map. This map is
used to find a pair of seams with minimal energy, which are then



Figure 4: The blue seam is a potential seam in the current fra-
me. The green one is the unchanged seam ŜL

i (y) from the pre-
vious frame. For pixel (x, y), temporal energy is computed as a
sum of differences between the current frame IL

t and the frame
ÎL

t , which is the result of removing seam ŜL
i (y) from IL

t . The
red line marks the pixel that was removed. Pairs of pixels for
which the difference is calculated are marked with an arrow.
The leftmost and rightmost pair of pixels have zero difference.

removed from the left and right frame. Lastly, the left seam is also
removed from the disparity map and the disparity values are upda-
ted. Note that only one seam pair is detected and removed at a time,
so the seam index i can be omitted.

In order to compute a pair of seams SL(y) and SR(y), the ener-
gy function is accumulated over each row of the frame, starting
from the top. The result is an accumulated energy map M(x, y).
M(x, 0) simply consists of those types of energy that do not de-
pend on pixels in the row above (all but Ever and Edisp). For each
pixel position (x, y), all potential predecessor pixels (x̂, y − 1) in
the row above are considered. For each potential predecessor lo-
cation x̂, the accumulated energy M(x̂, y − 1) of the predecessor
is added to the energy E(x, y, x̂) of the current pixel. The x̂ for
which this sum becomes minimal is chosen as the predecessor of
pixel (x, y):

M(x, y) = min
x̂

M(x̂, y − 1) + E(x, y, x̂)

x̂ is stored for each pixel position (x, y).
The last row of the accumulated energy map M(x, h − 1) then

contains the accumulated energy of a left seam ending in location
(x, h − 1). The minimum of the entire last row marks the endpoint
of a left seam with the lowest energy:

SL(h − 1) = arg min
x

M(x, h − 1)

(SL(h − 1), h − 1) is thus the last pixel of the seam. For this
location, a predecessor x̂ was stored during energy accumulation.
Consequently, (x̂, h − 2) is the second to last seam pixel. By fol-
lowing the stored predecessors in this fashion, the seam SL(y) is
defined for each row from bottom to top.

Note that M was computed using information from both views
simultaneously. This means that the detected seam has minimum
energy with respect to the left and the right view. The left seam SL

can now simply be mapped to the right frame by using Equation 2.
The i-th detected vertical seams SL

i and SR
i for the left and the

right view are now removed from their respective frame. Since this
is done in the same way for both views, the superscripts are drop-
ped here. To remove seam Si(y) from frame I(x, y), each row y
is processed individually. All pixels to the right of seam position
(Si(y), y) are shifted left by one pixel:

I(x, y) := I(x+1, y) for x = Si(y), . . . , w−i−1 (3)

Doing this for each row y reduces the width of I from w − i + 1
to w − i.

For reasons of efficiency, the disparity map is not recomputed
after the removal of each seam. Instead, the seam is also removed
from the disparity map and the disparity values around the remo-
ved seam are updated [2]. For the description of how the disparity
map is updated, we use the following notation. xL is the horizontal
position of a pixel in the left frame before seam removal. xR is this
pixel’s horizontal position in the right frame. The mapping is done
by subtracting the disparity from xL:

xR = xL − D(xL, y)
After removing the pair of seams, the pixel’s new horizontal

coordinate is x̄L and x̄R in the left and the right frame. In accor-
dance with Equation 3, this coordinate is calculated as:

x̂L =

⎧⎪⎪⎨
⎪⎪⎩

xL if xL < SL(y)

undef. if xL = SL(y)

xL − 1 if xL > SL(y)

x̄R is defined analogously. For each pixel position (x̄L, y), the
new disparity value is calculated as the horizontal distance of the
corresponding left and right pixels after seam removal:

D(x̄L, y) = x̄L − x̄R

4. EVALUATION
We evaluated the achieved quality of our algorithm by resizing

five challenging stereoscopic videos. The selected videos depict in-
door and outdoor scenes with moving objects. As there is currently
no other method for content-aware resizing of stereo videos, we
compare our new technique to our implementation of [2]. It em-
ploys appearance and disparity energy and avoids removing occlu-
ded or occluding pixels. However, the energy function in [2] has
no temporal component as it is a still image approach. In the follo-
wing, we refer to our own approach as SV for “stereo video” and
abbreviate the other method by SF for “stereo frame-wise”.

The evaluation was a no-reference comparison where the test
subjects only got to see the retargeted results, but not the origi-
nal sequence. This is comparable to the real-worldsituation where
users only see the resized video on their devices. As test sequences,
five stereo videos depicting indoor and outdoor scenes with moving
objects were used. We refer to them as: ”dialog”, ”office”, ”street”,
”table” and ”walking”. Example frames of the resized sequences
can be seen in Figure 1 and 5. The full videos with a side-by-side
frame format can be found online1. The original size of the videos
was 480 x 270. They were resized to a size of 384 x 270, which is
a reduction in width by 20%.

The evaluation was conducted on a desktop computer with an
NVIDIA GeForce GTX 560 graphics card, NVIDIA GeForce 3D
Vision shutter glasses, and a Samsung Sync Master 2233 display
operating with a refresh rate of 120 Hz. For each video sequence,
the results of the two algorithms were shown in random order. The
participants were first asked which of the two videos they prefer.
Then the subjects assigned scores to the two sequences in four ca-
tegories: deformation, cut-off objects, flicker, and distortion of the
3D effect. One of the following three grades could be given to each
video in each category:

1 http://ls.wim.uni-mannheim.de/de/pi4/research/ projects/retar-
geting/



Deformation Cut-off objects Flicker 3D effect Preferred by

SF SV SF SV SF SV SF SV SF SV

"dialog" 2.18 1.76 1.59 1.35 3.00 1.18 1.41 1.12 0 17

"office" 2.06 1.59 1.29 1.94 2.88 1.65 1.18 1.06 3 14

"street" 2.65 2.47 1.65 1.76 2.76 1.76 1.88 1.76 3 14

"table" 2.06 1.88 1.00 1.00 2.82 1.12 1.24 1.18 0 17

"walking" 1.71 1.41 1.18 1.53 2.88 1.35 1.24 1.12 1 16

Average 2.13 1.82 1.34 1.52 2.87 1.41 1.39 1.25 1.4 15.6

Table 1: Detailed overview of the scores given in the user evaluation.

1. not noticeable

2. noticeable, but not disturbing

3. noticeable and disturbing

A total of 17 participants took part in the evaluation, three of
which were knowledgeable in the field of video processing. Only
fully executed survey were used.

4.1 Analysis and Discussion
The evaluation showed that results of our stereo video approach

were significantly preferred over the frame-wise approach without
a temporal component. When asked which of the two compared
videos has higher overall quality, the subject chose the video pro-
duced by our method 92% of the time. The scores in the four ca-
tegories which were given by the participants are shown in Table
1. It can be seen that the viewers’ preference is mainly influenced
by the improved temporal stability of our approach, which leads to
considerably less flicker. The scores in the other three categories
were largely the same for both approaches, as was to be expected.

Deformations were noticed in both approaches equally but we-
re classified as not disturbing. The least distortions were spotted in
the ”walking” sequence while the most were found in the ”street”
sequence. This is because ”street” contains a lot of structured back-
ground and fast moving objects which move over a large portion of
the screen. This is not a beneficial scenario for seam-carving-based
algorithms in general. The ”walking” sequence shows abstract pat-
terns in which deformations cannot be detected easily.

Our algorithm performed slightly worse in the category of cut-
off objects. Both scores are in the range that indicates that this ar-
tifact remained mostly unnoticed. When they were detected in a
video, they were not disturbing to the viewer. Because SF works on
a per frame basis, it is more flexible in avoiding collisions of seams
with moving objects. This led to a slightly better score than the one
achieved by SV.

Flicker is an artifact which nearly all participants found to be ve-
ry disturbing in the videos that were resized using the SF approach.
It received the worst possible score in almost all of the ratings in
this category. This is because the frames are processed individually
without taking into account any temporal information. The seams
can thus vary freely between the frames which creates a disturbing
flicker effect. In our approach, seams are kept more stable between
the frames, which resulted in a better score. Flicker was not noticed
in the SV sequences most of the time.

The 3D impression of the sequences achieved high scores in both
approaches. The subjects did not notice an impairment of the 3D ef-
fect in the average. This category achieved the highest score overall.

4.2 Limitations
The approach described in this paper produces visible distortions

in some of the shots. As the seams are temporally connected, they

may cross objects that are large or fast moving. In such situations,
seam carving may not be the resizing technique of choice.

We also found it difficult to obtain good disparity maps in our
approach. The requirements for the computation of a disparity map
contradict the requirements of seam carving. While seam carving
works best in large untextured areas where there is little energy,
pixel correspondences for disparity maps are best computed over
highly textured regions. Erroneous disparity values have negative
effects on many aspects of the energy function, which makes seam
carving of stereoscopic media difficult in general.

5. CONCLUSIONS AND FUTURE WORK
We presented a seam carving technique for stereoscopic video.

Our technique takes forward energy in the left and right view as
well as the disparity map into account. Additionally, it calculates
energy from depth and adds temporal consistency to the seams.
Our evaluation showed that temporal consistency is an important
criterion when applying stereo seam carving to video. Its absence
leads to flicker and strongly decreases the perceived video quality.

Subjectively, the 3D effect was not impaired by seam carving.
We believe that this effect may be too subtle to notice in a complex
video scene. We did not find it necessary to detect and avoid occlu-
ded and occluding pixels in our approach. It was found that special
treatment of such pixels has a negative effect on quality when the
disparity map contains errors.

As future work, we would like to explore the possibility of remo-
ving horizontal seams from a video to reduce its height. The seams
being parallel to the direction of disparity leads to a large number of
new pixel matching problems. It would also be desirable to incor-
porate temporal consistency into the disparity map computation. So
far, it is computed frame by frame in our approach. Furthermore,
our approach would benefit from an efficient implementation. This
could be done by performing the most time consuming operations
on a GPU.



Figure 5: Example frames from the test sequences ”dialog”, ”walking”, ”table”, and ”street” that were used in our evaluation. The
width of the videos was reduced by 20%. Left: left view of the original frame. Middle: left view of the resulting frame. Right: anaglyph
(red/cyan) version of the resulting frame.
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