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Abstract

We propose a novel approach for tracking video objects
in interactive multimedia systems. Instead of designing a
single tracking algorithm that works well with some tem-
plates (video objects to be tracked) but fails with others, our
adaptive algorithm uses three distinct tracking techniques
with different strengths and weaknesses. The tracking tech-
nique that is selected for a given template depends on its
visual content and the content of the video. Our approach
is robust and allows tracking requests of users to be com-
puted despite an imprecise selection of a template. In ad-
dition, our approach is designed to comply with high preci-
sion, speed, and scalability to support many users simulta-
neously. As an exemplary testing environment for this track-
ing system, an interactive hypervideo system was chosen.
The system was integrated into the social network Facebook
and used by more than 12,000 users.

1. Introduction

Current social network sites increasingly use multimedia

and make it possible for users to customize their profiles.

Platforms such as YouTube1 or Yahoo! Video2 define the

current state of the art in interactive social media for videos

and allow users to share, rate, and comment videos. In

analogy to the term social media, we define social video
as the use of web-based technologies to enable interaction

with video content, to allow the creation of user-generated

content, and to support social interaction with other users

while watching or annotating videos. Our interactive social

video system merges social media with a special form of

interactive video called hypervideos. Hypervideos map the

idea of hypertext (using hyperlinks to reference external

websites) to videos by allowing users to interact with video

objects.

1http://www.youtube.com
2http://video.yahoo.com

We define the following terminology: An object is

a distinct element in a video clip. Its position typically

changes due to camera or object motion. The task of a

tracking algorithm is to locate the position and size of

objects. A template is a rectangular patch that specifies the

object region in one frame and is manually defined by a

user. The template is used as input for the object tracking

algorithm. The result of the object tracking is called

hotspot which defines an interactive region in a video. It is

used by the client to determine which pixels in a frame are

associated with an annotated object.

A major requirement of object tracking is to guarantee

a high precision in determining the position of interactive

hotspots. Due to the integration into social media, several

users can annotate arbitrary parts of a frame at the same

time, and tracking has to be completed within a short

time frame. Only algorithms that guarantee high speed
and work approximately in real time are able to fulfill

this requirement. The tracking module should be able to

satisfy both speed and precision in a rich set of videos,

assuming that new videos are uploaded by users and that

arbitrary objects in the videos are searched. Multiple

users can access the web-based system at the same time.

Therefore, the tracking algorithm should scale according

to the number of requests for tracking. Compared to pre-

vious approaches, the novel contributions of our system are:

• The proposed object tracker considers the most rele-

vant requirements of collaborative hypervideo systems

namely precision, speed, handling of incorrect object

positions, and scalability.

• Considering three object tracking methods, we pro-

pose an automatic method to select the most suitable

one based on the visual content of the template and the

video.

• We analyze precision and latency of the adaptive object

tracking algorithm in detail and present an evaluation

with 225 users.
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Figure 1. Using a hotspot to access information in a video

The remainder of the paper is structured as follows. Sec-

tion 2 describes related work. The overall system and the

details of the tracking algorithm are presented in Sections 3

and 4. The results of our evaluation are discussed in Sec-

tion 5 followed by a conclusion and an outlook in Section 6.

2. Related Work

Several applications have been developed which support

users to annotate spatial regions in videos. The DIVER
project [8] records panoramic videos in classrooms to an-

alyze the human activity in teaching situations. The system

allows to annotate a region in a video frame by adding text.

The HTIMEL project [3] evaluates the hypervideo concept

with a focus on distance learning. Hyper-Hitchcock [9] im-

plements a specialized type of hypervideo that supports a

single hyperlink in a frame. This link does not annotate

an object but a certain time interval of the video. Similar

to HTIMEL, the Hitchcock system lacks support for auto-

matic tracking algorithms. Advene [1] supports multiple an-

notations at a time but it still annotates time periods and no

distinct objects. In comparison to our application, none of

these hypervideo systems provide a fast and robust object

tracking.

We present an adaptive approach that analyzes the tem-

plate and video content and selects the most suitable object

tracker, based on the MeanShift algorithm [4], template-

based matching, and SURF features [2] combined with the

Kanade-Lucas optical flow tracker [6]. These algorithms

were chosen due to their ability to perform well in dis-

tributed environments with limited resources and especially

without the support of GPUs. The idea of MeanShift [4] is

to identify regions with characteristic colors. Considering

the color distribution of the template, the algorithm begins

by setting hypothesized clusters in the frame. The cluster

centers are iteratively shifted to the mean of the data in a

cluster until no more changes are detected. Template-based
matching is a brute force approach that compares color or

intensity values between a template and a series of consec-

utive frames. To reduce the run time of such an approach,

template-based matching is usually implemented by only

regarding the local neighborhood of the previously deter-

mined template position.

Speeded Up Robust Feature (SURF) [2] is a fast method

for detecting and extracting feature descriptors that are ro-

bust to scaling and rotation. Feature correspondences are

defined as nearest neighbors between the features of a tem-

plate and an arbitrary frame. The computational effort to

compare feature elements is very high. Algorithms like hi-

erarchical k-mean trees or randomized k-d trees provided

by the Fast Library for Approximate Nearest Neighbors
(FLANN) [7] allow a more efficient comparison of features.

The idea of the Kanade-Lucas tracker (KLT) [6] is to

calculate the pixel displacements of consecutive frames on

the basis of motion vector fields. Especially in case of ob-

ject occlusion, where SURF feature matching is no longer

possible, we use KLT to estimate the object position. In ear-

lier work, we tracked Harris feature points to estimate the

camera motion and segment moving objects in video se-

quences [5]. The two-dimensional shapes of the segmented

objects were used for objects classification. The computa-

tional effort of this approach is too high to be applicable to

our hypervideo scenario.

3. System Overview
Our system implements hypervideos as a combination of

video and additional information of any type. Users should

be able to access information (navigate) within a hypervideo

via an interactive hotspot (see Figure 1) and to add their

own ideas to the hypervideo (annotate). Supporting users in

both processes – the navigation and annotation of a video
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Figure 2. Overview of the tracking process: user defines template

region (a), information about region is sent to server (b), adaptive

object tracking (c), hotspot regions are sent back to all clients (d).

– is the major goal of our system. Reliable object tracking

is one of the most important features in such a system. Due

to the large number of frames in a video, a manual object

tracking by users is inapplicable. The tracking should be

done in a transparent way: users should not be aware of the

underlying functionalities and required resources.

Figure 2 gives an overview of the tracking process. Tasks

like the communication between user clients and the server,

the simultaneous access of multiple users, and the automatic

tracking functionalities lead to a system design based on a

distributed web application. It is implemented to operate in

a cloud-like environment and thus distributes the computa-

tional load of tracking to multiple instances of the server.

4. Object Tracking

The standard concept for representing navigation in hy-

pervideos is the usage of hotspots that build an overlay on

video objects. Users can simply mark a new object by

clicking and dragging the mouse on the video screen. The

selected region is the template that will be automatically

searched in the hypervideo. It is essential that users only

have to mark an object once and that the hotspots follow the

movements of annotated objects throughout the video.

4.1. Selection of a tracking algorithm

We known from experience that it is not possible to get

robust results by using only one object tracking algorithm

due to the different characteristics of the video objects but

also due to changes in the background of the scene. Our

system implements an adaptive rule-based approach. It is

adaptive in respect to the templates that users can define.

The algorithm decides dynamically which of the following

three tracking algorithms is used:

• Speeded Up Robust Features (SURF) [2] combined

with the Kanade-Lucas-Tracker (KLT) [6],

• MeanShift algorithm [4], and

• Template-based matching.

The general idea is to analyze the properties of the tem-

plate and the underlying video to automatically select the

algorithm that works best. SURF, for example, uses fea-

ture descriptors that allow a scale- and rotation-resistant lo-

calization of a template. However a template can only be

tracked in case that it contains a sufficient number of SURF

descriptors. In case of occlusion or object deformation, the

number of corresponding SURF feature points drops, and

KLT is used instead. KLT calculates the motion of arbitrary

pixels but it is computationally expensive.

MeanShift, in contrast, works as a segmentation algo-

rithm using colors to track templates. This approach is best

used in situations where the color of the template is unique;

this helps to reduce misclassification of objects and thus

false hits. Template-based matching can always be used be-

cause it does not rely on distinct color distributions or on a

minimum number of SURF descriptors. But template-based

matching is very sensitive when objects are scaled, rotated,

or in the case of perspective camera motion.

We have implemented an adaptive object tracking algo-

rithm that switches the tracking according to the current

properties of the template and the video. The number of

SURF descriptors of the template defines whether to use

SURF-based tracking or not. Features are accepted for the

tracking if two requirements are fulfilled: the first require-

ment selects features that are not located at the borders of

the template. Relevant features are classified by reducing

the template size by 10 percent at each border. This reduces

the impact of the inaccuracy of users that draw the rectan-

gular region in the first phase of the annotation process. A

second requirement restricts the chosen features by setting

a minimum distance of 10 pixels between two features. Our

algorithm uses SURF matching if at least ten valid features

are located in a template.

If the number of feature correspondences drops after

only a few frames, KLT is used to support the SURF fea-

ture matching. In frames where the corresponding features

drop below the minimal threshold, arbitrary pixels within

the last accepted object position are chosen to estimate the

position based on KLT in the next frames. If the position is

successfully estimated, new SURF descriptors are extracted

and added to the template feature set.

A major problem in the tracking of objects is the occur-

rence of partial or full occlusion. Occlusion reduces the

number of features for tracking and at the same time the oc-

cluding objects generate new features. The system should

reliably track an object without accepting features from for-

eign objects. The occlusion management is initiated in sit-

uations where the found matches of SURF features signif-

icantly drop within one or more quadrants of the template.

Features in these areas that cannot be mapped to the tem-

plate are analyzed further: If the movement is linear uni-

form, it is assumed that all new features belong to a differ-
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Figure 3. Communication while tracking

ent object and thus occlusion is present. We can linearly

interpolate object movement in those situations.

If it is clear in advance that SURF feature matching can-

not be initiated with enough features (less than 10) in the

template, the MeanShift algorithm is selected for tracking.

The average precision of MeanShift is significantly lower

compared to SURF feature matching but it is still robust

against scaling and rotation. The algorithm compares the

color distributions of every frame of a clip with the searched

template. MeanShift is selected for a shot when the color

distribution of the template is different from the color dis-

tribution of most frames of this shot. Thus, the system does

only apply MeanShift when the probability is very high that

tracking works with high precision. The similarity measure

is based on histograms with 180 bins in HSV color space.

The system calculates the differences of the eight most sig-

nificant bins and uses the MeanShift algorithm if the nor-

malized distance exceeds a value of 0.6. This minimum

distance is weighted according to the quota of template size

and the video’s frame size. This is necessary because the

threshold should be smaller in cases where large objects

are tracked. The assumption is that MeanShift can reliably

track templates when the color distribution difference of the

template and the current video shot is high. Shot detection

was implemented but will not be described in detail here.

In all other cases, in which neither SURF descriptors nor

MeanShift is capable to track an object in a reliable way,

template-based matching is used.

4.2. Support of real time tracking

Not only the precision is important for the practical us-

age of our hypervideo system but also the delay which a

user has to wait until the automatically tracked objects are

visualized. The system integrates several tricks to ensure

high transparency for users, so that they are not aware of

the underlying processes. A first trick assumes that users –

after the annotation process is complete – will resume the

current hypervideo. Tracking thus starts from the current
point in time of the video and tracks the annotated object

until the end of the video clip. Afterwards, the remaining

part from the beginning of the video is computed.

Tracking is initiated immediately when a user finishes

the first step of the annotation process – the selection of

the rectangular region of the video object. Users are then

adding additional information nodes. That may take from a

few seconds up to several minutes. During this time, the

tracking module processes huge parts of the hypervideo.

The current intermediate results of tracking are transmitted

from the server to all clients every 20 seconds (see Figure

3). When a user aborts the annotation process before com-

pletion, tracking results are discarded.

Despite the proposed optimizations, tracking based on

SURF features is computationally expensive; on the aver-

age the system classifies approx. 1,000 feature points per

frame. We reduce the 64 elements of each descriptor to

the most relevant 20 elements by using principal compo-

nent analysis (PCA). A slight reduction of the precision is

the negative effect of the speed improvements. To compen-

sate these negative side effects the motion in two consecu-

tive frames of the detected features is limited to 10% of the

image size.

Nevertheless, keeping the descriptors for all video

frames in main memory may overwhelm the capacity of a

server. One technique our hypervideo system uses to reduce

the load is to distribute the task to different machines. New

support servers using Amazon EC2 small-size instances are

automatically started when necessary.

The calculation of the SURF PCA feature descriptors

and the histograms used for MeanShift is started whenever

a new video is added to the system. A registration server

stores the data and transfers it to support servers when nec-

essary. Matching of feature points is the only major compu-

tational operation when users annotate new video objects at

a later date. We additionally improve the feature matching

step by using a fast approximation of the nearest neighbors
on the basis of FLANN [7].

A final optimization considers the fact that the posi-

tion of an object does not change significantly between two

frames. Therefore, it is not necessary to estimate the object

position in each frame. A few estimations per second are

usually sufficient, and missing object positions can easily

be interpolated. The combination of all our optimizations

allows the tracking of video objects up to PAL resolution

videos in real-time.

5. Evaluation
The main task of our adaptive object tracking is to cor-

rectly position the interactive hotspots. The following eval-

uation measures whether this adaptive approach based on

different algorithms is able to handle complex situations in

different video sequences. Experiments were done on three

separate systems shown in Table 1.

Precision and latency of the tracking algorithm are the

most relevant requirements for an efficient usage of the hy-

pervideo system. Precision measures the quality of de-

tecting the correct position of a video object. Deviations
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Table 1. Configuration of the test systems

System CPU Memory
I Intel Core I5 4 x 2.27 GHz 4 GB

II AMD Opteron 2.33 GHz 1 GB

III Intel Xeon 2 x 2.66 GHz 8 GB

Figure 4. Object tracking with full occlusion.

may lead to misinterpretation or confusion as the user is no

longer able to identify what the interactive hotspot anno-

tates. Latency determines the period of time the algorithms

need to calculate the position of a hotspot in the entire video

sequence. High latencies may lead to the same negative ef-

fect as low precision. When the user resumes a video after

completing the annotation, he expects the new interactive

hotspot to move according to the object motion.

We selected a set of 16 video sequences which include

situations where the tracking has to handle changes in illu-

mination, deformation of objects, and occlusion (see Fig-

ure 4). Furthermore, sports sequences like football include

rapid movements, zoom, and rotations. Videos with many

scene breaks and different resolutions down to 320 x 240
pixels complete the test set. Low resolution videos are es-

pecially challenging as details are lost and thus the preci-

sion of feature-based approaches drops. As ground-truth

data and a basis for the evaluation of the adaptive tracking,

2,526 reference objects in randomly selected frames were

marked individually in the video sequences. Thresholds and

parameters are used as described in Section 4.

5.1. Precision

Only a correct positioning of interactive hotspots guar-

antees a high user acceptance of the system. Table 2 shows

the results of the adaptive tracking algorithm and com-

pares them to the performance of SURF feature match-

ing, the MeanShift algorithm, and template-based match-

ing. Tracked positions and object sizes are labeled as cor-

rect if the coordinates of the corners are located within a

radius of 15 pixels of the reference corners.

Table 2. Object detection rates of the adaptive tracking algorithm

Video Reference
objects

SURF Mean-
Shift

Templ.
based
match.

Adapt.
track-

ing
Football 126 97.6% 80.2% 1.6% 99.2%

Cars 42 100% 0% 0% 100%

Street 40 100% 0% 0% 100%

Univ. I 170 98.2% 17.1% 25.9% 98.8%

Univ. II 81 98.8% 0% 0% 98.8%

Occlusion 147 74.8% 0% 7.5% 73.5%

Sports 225 88.9% 6.2% 0% 90.2%

Windmill 440 86.8% 86.6% 23.2% 99.1%

Sintel I 285 91.6% 0% 100% 100%

Sintel II 213 73.7% 89.2% 48.8% 97.7%

Sintel III 305 48.5% 0% 5.3% 49.5%

Rabbits 120 63.3% 0% 59.2% 70.8%

Flamingos 45 31.1% 100% 17.8% 100%

Highway 48 93.8% 0% 0% 93.8%

Lions 143 81.8% 0% 13.3% 89.5%

Prairie 96 77.1% 0% 30.2% 81.3%

Overall 2,526 80.1% 30.1% 27.4% 88.2%

The precision of the implemented adaptive tracking
(88.2%) shows a superior performance with an improve-

ment of 8.1 % compared to SURF feature matching alone

(80.1%). The more simple algorithms like MeanShift
(30.1%) and template-based matching (27.4%) perform sig-

nificantly worse. The adaptive usage of different algorithms

helps to compensate the weaknesses of the individual track-

ing techniques in most cases. Figure 5 shows sample frames

of three video sequences of our test set. Cars is a typical

sequence where SURF feature matching works very well.

The video sequence Flamingos is an example where Mean-

Shift performs best due to the unique color of flamingos.

Deformations of the tracked objects during playtime cause

the low detection rate when using SURF feature matching.

Template-based tracking works very robustly in case of se-

quences like Sintel I because the deformation of the object

to be tracked (foot of the person) is very low. The template

is very small which causes some tracking errors in case of

SURF feature matching. Object and background colors are

very similar in this sequence which makes MeanShift inap-

plicable.

The percentage how often each algorithm is used by the

adaptive tracking depends on the content of the video. In

detail, SURF feature matching is used in 51.17% of all

frames of the evaluated test set, the MeanShift algorithm

in only 13.29%, and template-based tracking in the remain-

ing 35.54%. MeanShift performs especially well in scenes

where humans are tracked.

The false hit rate gives an overview on the percentage of

frames in which a tracking algorithm calculated the wrong

position in comparison to the overall number of frames.

The adaptive tracking (7.0%) generates the lowest error
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Figure 5. Sample frames and object templates of the sequences Cars, Flamingos, and Sintel I.

rate, followed by SURF (7.69%), template-based matching

(20.37%), and MeanShift (26.06%). In case of occlusion

(see Figure 4), our system compensates most of the partial

occlusions (95.6%) and even handles full occlusions quite

well (56.25%).

5.2. Latency

Latency is as important as precision for the hypervideo

system. When users are watching a hypervideo, precise

tracking is of no value if the system does not deliver the

tracking results in time. When every single frame is an-

alyzed, for every second in the video the system requires

between 2.66 and 3.48 seconds depending on the test sys-

tem used (see Table 1) to track an object. In case of SURF,

between 59.6% and 81.2% of the calculation time is caused

by the comparison of feature elements and the detection of

the nearest neighbors. The computational effort would be

much higher without using the fast approximations of near-

est neighbors on the basis of FLANN [7].

By analyzing only every sixth frame of a video, the com-

putation time is reduced, and the visualized hotspots appear

even more stable due to the interpolation of the unknown

object positions. This significantly reduces the computation

time per video second (between 0.51 and 0.87 seconds) and

allows object tracking in real-time.

5.3. User Feedback

The hypervideo client was developed as a Flash3 appli-

cation which allows a high accessibility due to the integra-

tion of the client into standard web browsers. Facebook was

chosen as the environment for the user evaluation. This ap-

proach attracted more than 12,000 users who tested the sys-

tem within four months. A survey tool was implemented

and fully integrated into the hypervideo system. The evalu-

ation with this survey tool was stopped after 225 fully com-

pleted evaluation data sets.

The evaluation tested the combination of annotation and

navigation in the hypervideo system. The users started 383

tracking requests by defining new video objects with the

mouse. 16 users (4.1% of the tracking requests) recognized

some incorrect object positions. These errors typically oc-

cur in case of occlusion, object deformation, or when using

3http://www.adobe.com/products/flash.html

small templates. In case of shot boundaries, the same ob-

ject might be captured from a different camera perspective,

and the object is lost due to sudden changes of object fea-

tures (e.g., an object switches from profile to frontal view).

Tracking errors also occur when users define a template that

includes a large ratio of background pixels.

Despite the incorrect object positions in some frames,

the overall system was rated very good which could also be

recognized in the large number of Facebook recommenda-

tions. Although a large number of users tested the system,

speed limitations caused by the tracking algorithm have not

been reported by any user.

6. Conclusions and Outlook
Our adaptive tracking approach allows automatic object

tracking in an interactive hypervideo system. It guarantees

a combination of high scalability with precision and speed.

A suitable tracking technique is chosen by easily detectable

features. Major requirements of our system are to handle

common problems like occlusion of objects in videos and

inaccurate selections of video objects by users, as well as

ensuring a near real-time experience for a large number of

users that collaboratively work with hypervideos. Due to

the integration into the social network Facebook, we got

much feedback from more than 12,000 users to improve our

hypervideo system. The evaluation shows that the algorithm

performs well in a rich set of sequences.

Still, there are several open issues for future research.

Occlusion detection works in a majority of situations quite

well, but an improvement could be to support the linear ap-

proximation of the object position with particle filters. Fur-

ther possible enhancements include using the computational

power of modern graphic cards. Although current instances

of Amazon EC2 do not support graphical computation on

dedicated cards we expect that special services will offer

this functionality in the future.
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