
PARALLEL ALGORITHMS FOR HISTOGRAM-BASED IMAGE REGISTRATION

Benjamin Guthier, Stephan Kopf, Matthias Wichtlhuber, Wolfgang Effelsberg

{guthier, kopf, effelsberg}@informatik.uni-mannheim.de
mwichtlh@pi4.informatik.uni-mannheim.de

University of Mannheim, Germany

ABSTRACT

Image registration is the process of finding pixel correspon-

dences between images that were taken at different points in

time or from different viewpoints. In particular, we are inter-

ested in registering exposures captured with varying shutter

speed settings for the creation of high dynamic range (HDR)

images. For an existing histogram-based image registration

technique, we discuss the suitability for parallelization. Mod-

ifications to the technique that allow us to run parts of the

algorithm in parallel are presented. The parallel parts can

then be processed by a graphics processing unit (GPU) for

improved performance. Our results show that the most time

consuming component of the algorithm can be sped up on an

Nvidia GPU by a factor of up to 19 over the original sequen-

tial version. The average speed-up is 5.9:1.

Index Terms— Image Registration, HDR Video, GPU

1. INTRODUCTION

In order to capture the entire dynamic range of a scene with

a regular camera, one exposure may often be insufficient. A

scene that consists of a dark indoor area and a window to the

bright outside may be partly under- or overexposed, depend-

ing on the chosen shutter speed and aperture setting. High Dy-
namic Range Imaging (HDR Imaging) provides techniques to

tackle this problem. One of them is temporal exposure brack-

eting, where multiple exposures of the same scene are cap-

tured using varying shutter speeds. These exposures then have

to be registered with respect to each other to compensate in-

termediate camera and scene motion so that pixel correspon-

dences can be established. We argue that a purely transla-

tional camera motion model is sufficiently accurate when the

exposures are captured with high frame rates (e.g., 208 frames

per second for an HDR video). This assumption is supported

by [1]. The fully registered exposure set is then merged into a

single HDR frame. The last step is tone mapping of the HDR

frame to compress its dynamic range to be displayable on a

regular computer display. References for merging and tone

mapping can be found in [2].

In our work, we aim for the creation of HDR video in

real-time. This means that all the steps described here need

to be performed within the duration of a single video frame.

The first step in achieving this is employing fast algorithms

for capturing and image registration [2, 3]. Additionally, we

decrease the computation time by an efficient parallel imple-

mentation. Current Graphics Processing Units (GPUs) can

run several hundred threads in parallel. However, the paral-

lelization of sequential algorithms is a non-trivial task. It re-

quires profound knowledge of the algorithm and the hardware

being used. There already exist a number of GPU-based im-

age registration techniques, particularly for medical images

[4, 5]. To our knowledge, none of them focus on the chal-

lenges arising from the large brightness differences and satu-

ration effects among the exposures from which an HDR video

is created. This also applies to GPU implementations of reg-

istration techniques in libraries like OpenCV.

This paper is based on our previous work on image regis-

tration and describes the changes made for a parallel imple-

mentation [3]. It is structured as follows. Sections 1.1 and

1.2 give an introduction to our existing registration technique

and to the properties of modern GPUs. Section 2 analyzes the

components of our image registration method towards suit-

ability for a parallel implementation. It also describes the par-

allelization of two components. The performance improve-

ments achieved by our modified algorithms are shown in Sec-

tion 3. Section 4 concludes the paper.

1.1. Histogram-based Image Registration

One HDR video frame is created from a set of low dynamic

range (LDR) exposures which were captured with camera

motion in between. This section gives an overview of the

computation of horizontal and vertical shift between a pair of

exposures. Details can be found in the original paper [3].

First, a so-called Mean Threshold Bitmap (MTB) is cal-

culated for each exposure [1]. It is a black and white version

of the original image with a threshold chosen such that 50%

of the pixels are black and 50% white. The threshold is set by

first creating a brightness histogram and finding its median.

The advantage of MTBs is that they are – to a certain degree

– invariant to exposure change. This circumstance makes our

registration technique particularly suitable for HDR video.

Once an MTB is created, its pixels are summed up hor-

This is a preliminary version of an article published by
Benjamin Guthier, Stephan Kopf, Matthias Wichtlhuber, and Wolfgang Effelsberg.
Parallel algorithms for histogram-based image registration.
Proc. of 19th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 172–175, 2012.



izontally and vertically to establish row and column his-
tograms. It is necessary to calculate separate histograms

counting black and white pixels, because pixels near the

threshold are ignored. This leads to a total of four histograms

per exposure and eight histograms for the registration of an

exposure pair. See Figure 1 for an example.

Next, the Normalized Cross Correlation (NCC) between

corresponding histograms of the two exposures is calculated

to estimate the intermediate shift. In the example of horizon-

tal shifts, the NCC between the column histograms of both

images is calculated for each possible shift value within a

predefined search range. The shift value leading to the best

correlation value is assumed to be the correct one.

As a last step, all resulting shift vectors are validated us-

ing a Kalman filter to incorporate knowledge of the motion

in previous frames into the estimation. Based on a certainty

criterion, the shift vector is used directly or interpolated from

values obtained in preceding frames.

1.2. Considerations for a GPU Implementation

When designing a parallel algorithm for a GPU implementa-

tion, the specific properties of the hardware must be under-

stood. We use Nvidia’s Compute Unified Device Architecture
(CUDA) to create code for Nvidia GPUs. This section intro-

duces the architecture common to all CUDA devices, giving

numbers that are specific to our graphics card where applica-

ble. For details, see Nvidia’s CUDA C Programming Guide 1.

The computational problem is first divided into indepen-

dent blocks which share as little data as possible. They are

later processed on separate multiprocessors on the GPU. In

our scenario, this is done by parting the image into rectan-

gular areas (e.g., 32 by 32 pixels). The main difficulty lies

in achieving data independence between the blocks. Data is

shared more easily within a block.

A block is processed by starting multiple threads on a

multiprocessor. Every thread runs the same code on a differ-

ent part of a block. Sets of 32 threads are processed in parallel

on one multiprocessor, sharing the same instruction counter.

Conditional jumps that take different paths in parallel threads

can thus only be handled inefficiently.

The data to be processed (i.e., the LDR exposures) must

be copied from the host computer’s memory to the memory

of the graphics card. The GPU distinguishes (among other

types) between global and shared memory. They differ in

visibility, size and access time. Global memory is accessible

by all blocks and is typically several gigabytes in size, but ac-

cessing it can take up to 800 clock cycles. Shared memory is

a user-managed cache that is shared only among the threads

of one block. Its size is 48 kilobytes on our GPU, and it can

be read or written without latency, similar to a CPU regis-

ter. Its main purposes are fast temporary data storage and

communication between the threads of a block. The entire

1http://developer.nvidia.com/nvidia-gpu-computing-documentation/

Operation Cost P AI Impl.

Brightness Histogram high med. low GPU

Median Computation low med. low CPU

Row / Column Histogram high high low GPU

Cross Correlation low high high GPU

Kalman Filtering low low high CPU

Table 1. Relative computational cost, amount of parallelism

(P), arithmetic intensity (AI), and type of implementation of

the registration steps. “high” entries indicate factors that sug-

gest a GPU implementation.

memory range is split up into 32 interleaved memory banks

such that successive 32-bit words are assigned to successive

banks. This means that the 32 threads of a block that are pro-

cessed concurrently can all access shared memory in parallel

as long as the requested words lie on 32 different memory

banks. When two concurrent threads access different words

on the same memory bank at the same time, they can only be

read sequentially, and the performance gain of parallel pro-

cessing is lost. This needs to be considered when designing

algorithms for CUDA.

2. PARALLEL IMAGE REGISTRATION

Redesigning an algorithm for a parallel implementation takes

considerable effort. It is also more difficult to assure cor-

rectness and to maintain such an implementation. We thus

first analyze the individual steps of image registration with

respect to their computational cost and their suitability for

parallelization. The former is measured from the existing

sequential code. The latter is judged by the amount of paral-

lelism a problem exhibits and its arithmetic intensity: Paral-

lelism is the percentage of instructions that can be executed

concurrently; arithmetic intensity can be defined as the ratio

between mathematical operations and memory access, where

a higher arithmetic intensity is preferable for a GPU realiza-

tion. These criteria are summarized in Table 1.

Brightness histogram: During the creation of a histogram

with 64 bins, data must be written to the same set of 64 mem-

ory addresses for all of the pixels. This induces a strong data

dependence. Additionally, there is very little computational

work between the memory accesses. Despite these facts, we

considered it for a GPU implementation because it is a costly

operation.

Median computation: There exist parallel sorting algo-

rithms, so the problem of finding the median of a histogram

can be parallelized. However, the problem size of searching

through the bins of a histogram is too small to justify the

effort.

Row and column histograms: The creation of an MTB can

be viewed as an intermediate step to the computation of row

and column histograms. Both operations have low arithmetic



Fig. 1. A mean threshold bitmap. The row and column histograms to the left and below respectively count the number of black

pixels in the corresponding line.

intensity. MTB creation has high parallelism as each pixel

can be converted separately. Computation of row and column

histograms brings up a similar issue as brightness histogram

computation, though: An entire row/column accesses the

same histogram bin. However, in this case, this access is

predictable and can be optimized. Since this is the most time

consuming step of the entire image registration, it is also done

by the GPU.

Normalized cross correlation: The NCCs for all possible

shift values of the search range can be calculated indepen-

dently of each other. A high cache hit rate is expected because

the same histogram bins are read repeatedly. Additionally,

a high arithmetic intensity makes NCC computation well-

suited for parallelization. On the other hand, it is a rather

cheap operation overall. We implemented it on a GPU but

left it out of this paper because of space limitations.

Kalman filtering: Filtering only takes about 16μs on a CPU,

so its computational effort is negligible.

2.1. Brightness Histogram Computation

The image over which the histogram is computed is first sub-

divided into rectangular areas of size M ×N pixels (32× 64
in our case). To calculate a histogram, each block has to per-

form M · N read and write operations on the histogram bins

in global memory. This would take many clock cycles, and

the operations would be strictly serial. Instead, we apply a

paradigm called parallel reduction. That is, we first create

histograms for small image areas and then successively merge

them into one final histogram over the entire image.

M threads are started per block. Each thread computes

Fig. 2. Simplified illustration of shared memory with 8 banks

and 64 addresses. Consecutive addresses lie on consecutive

banks. The histograms are interleaved such that each lies on

its own bank. Eight threads can write concurrently.

a separate histogram with 64 bins over one row of the block

which is written to the fast shared memory. Interleaving of

the histograms in shared memory such that a whole histogram

resides on the same memory bank allows for conflict-free

memory access by the threads, and true parallelism can be

achieved. The banks of shared memory and the way the his-

tograms are stored is illustrated in Figure 2.

Next, the M histograms of the block are summed up into

a single histogram for the block. Since the content of the

shared memory expires when the threads terminate, the same

M threads must be re-used for summation. Each thread is as-

signed two bins of the total histogram. It loops through the M



histograms (vertically in Figure 2) and maintains two sums. It

must be noted that each histogram resides on its own memory

bank. If all threads started with the first histogram, the M
read operations to the same bank would be serialized, leading

to bad performance. Instead, summation loops start with a

different histogram for each thread (shifted by one relative to

its predecessor thread). Like this, all summations can be done

in parallel without bank conflicts. The final sums (i.e., the

histogram for the block) are then written to global memory

by an atomic add function provided by CUDA.

With this approach, we reduce the number of expensive

write operations to global memory from M · N to 64 (the

number of histogram bins) per block.

2.2. Row and Column Histogram Computation

This section describes the creation of the horizontal and ver-

tical projection profiles, called row and column histograms,

on a GPU. For the registration of an image pair, a total of

eight such histograms are created (see Section 1.1). All his-

tograms are calculated separately by similarly implemented

method calls. On a GPU, this is more efficient than running

one parametrized method with code branching. For simplic-

ity, we restrict our description to the creation of a column his-

togram counting black pixels for every column of one image.

We subdivide the image into blocks of M×N (here: 32×
32) pixels. This time, one thread is started for each pixel in

the block. Each thread computes the MTB of its respective

pixel, that is, the thread checks if its pixel is darker than the

threshold and writes a 1 into shared memory. The MTB is

thus created in shared memory only. Care is taken that the set

of threads that are executed concurrently on a multiprocessor

write the bit to separate memory banks.

N of the threads are then re-used to count the black pixels

of each column. A thread loops through all rows of its column

to count the 1s in shared memory. An entire row resides on

the same memory bank (see Figure 2). So, in order to prevent

bank conflicts, the threads each start counting from a different

row so that all N read operations can be done in parallel. The

sum of black pixels in a column is then added to the column

histogram in global memory using an atomic add operation.

3. EXPERIMENTAL RESULTS

In our experiments, we compared our new parallel version

of the algorithms running on a GPU to the original sequen-

tial one running on a CPU. The algorithms are executed on a

static test set consisting of 1000 captured images for a stable

average. The images have VGA resolution, which is the res-

olution of the 208 fps FireWire camera we employ. Note that

none of the processing times depends on the actual contents

of the images.

Our evaluation system has an Intel Core 2 Duo CPU with

two cores running at 2.13 GHz. The sequential image regis-

Operation
GPU CPU

μ [ms] σ [ms] μ [ms] σ [ms]

Brightness Hist. 0.076 0.009 0.503 0.061
Row / Col. Hist. 0.278 0.010 5.312 0.676

Cross Correlation 0.245 0.013 1.639 0.070

Table 2. Mean (μ) and standard deviation (σ) of the compu-

tation time taken by GPU (parallel) and CPU (sequential) for

the considered parts of the algorithm. All measurements were

performed on 1000 VGA images.

tration is strictly running in one thread though, so no perfor-

mance gain due to the second CPU core is to be expected. The

graphics device used is a GeForce GTX 480 from Nvidia. It

has 15 multiprocessors running at 1.4 GHz. Each of them can

process 32 parallel threads running the same code. This leads

to a total of 480 concurrent threads. The shared memory is

divided into 32 banks.

Table 2 shows the mean processing times taken by GPU

and CPU for the components of our algorithm we modified.

The components are executed as many times as necessary for

the registration of an image pair. That is, we create one bright-

ness histogram, eight row and column histograms and per-

form one NCC. The table shows that the creation of row and

column histograms can be sped up by a factor of 19 while the

other two components are 7 times faster on the GPU. In the

CUDA architecture, processing time scales linearly with the

number of blocks to process. The computation time of the his-

tograms is thus approximately linear in the number of image

pixels. This behavior is identical for both implementations

and has been verified in our experiments. The computation

time of the NCC mainly depends on the search range of the

shift which is a constant. If more than one pair of images is

registered, the entire process is repeated for each pair.

Note that the numbers presented here only contain raw

processing time of the parallelized parts. In a realistic sce-

nario, image data and intermediate results have to be trans-

ferred between the machine’s RAM and the graphics card as

some steps are calculated on the GPU and some are left on

the CPU. This decreases the overall performance gain. All

considered, registering a pair of exposures takes 7.69 ms on

the CPU and 1.30 ms on the GPU. This means a decrease

of overall processing time by a factor of 5.9, leaving enough

time per HDR frame available for color space conversions,

frame merging and tone mapping. The resulting HDR frame

rate also depends on these processes.

4. CONCLUSIONS

We presented our optimization for image registration of low

dynamic range exposures. We analyzed the steps of the exist-

ing method to detect the most time-critical components and

to assess their suitability for implementation on a GPU. Per-



formance was improved by a factor varying from 7 to 19 with

an average overall speed-up of 5.9:1 for a pair of registered

exposures.

5. REFERENCES

[1] G. Ward, “Fast, robust image registration for composit-

ing high dynamic range photographs from hand-held ex-

posures,” Journal of Graphics Tools: JGT, vol. 8, no. 2,

pp. 17–30, 2003.

[2] B. Guthier, S. Kopf, and W. Effelsberg, “Capturing high

dynamic range images with partial re-exposures,” in Pro-
ceedings of the IEEE 10th Workshop on Multimedia Sig-
nal Processing (MMSP), 2008, pp. 241–246.

[3] B. Guthier, S. Kopf, and W. Effelsberg, “Histogram-

based image registration for real-time high dynamic

range videos,” in Proc. of IEEE International Confer-
ence on Image Processing (ICIP2010), Sept. 2010, pp.

145–148.

[4] R. Strzodka, M. Droske, and M. Rumpf, “Image regis-

tration by a regularized gradient flow. A streaming imple-

mentation in DX9 graphics hardware,” Computing, vol.

73, no. 4, pp. 373–389, 2004.

[5] A. Köhn, J. Drexl, F. Ritter, M. König, and H. Peitgen,

“GPU accelerated image registration in two and three di-

mensions,” Bildverarbeitung für die Medizin 2006, pp.

261–265, 2006.


