
BSMX - A Prototype Implementation for Distributed
Aggregation of Sensor Data

Sascha Schnaufer
Computer Science IV

University of Mannheim
schnaufer@informatik.uni-

mannheim.de

Stephan Kopf
Computer Science IV

University of Mannheim
kopf@informatik.uni-

mannheim.de

Wolfgang Effelsberg
Computer Science IV

University of Mannheim
effelsberg@informatik.uni-

mannheim.de

ABSTRACT
Beacon-based Short Message eXchange (BSMX) is a sys-
tem to exchange small-sized messages between unassociated
WLAN devices like smartphones or access points. In this
paper, we describe our proof of concept implementation of
BSMX for Linux and the Android operating system. Fur-
thermore, we introduce a novel probabilistic data structure
that BSMX utilizes to provide application developers meth-
ods for distributed data aggregation.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

1. INTRODUCTION
Vehicular Ad-Hoc Networks (VANETs) are a special class

of Mobile Ad-Hoc Networks (MANETs) where road vehicles
with WLAN equipment form a network without additional
infrastructure. In such a network each vehicle can communi-
cate directly with all other vehicles in radio range. Typical
applications for such a network try to increase the driver’s
safety and convenience by exchanging sensor values. For in-
stance, SOTIS [8] and TrafficView [5] exchange information
like speed and position among vehicles in order to enable
users to access the current traffic conditions. Furthermore,
[1] propose to equip ticket machines with WLAN so that
they can inform vehicles about the capacity utilization of
their parking lots. These approaches have in common that
vehicles automatically aggregate received information and
exchange these aggregates among each other. If a received
aggregate is outdated or the distance between the vehicle
and the position of the data origination is too large, the
information is dropped and the dissemination is stopped.
Instead of querying special information, the system works
as a best effort service and automatically exchanges aggre-
gates about the situation in the proximity of a vehicle. Some
approaches also propose a hierarchical aggregation system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PhoneSense 2010 Zurich, Switzerland
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

For instance, the authors in [1] subdivide the plane into a
grid and utilize a quad tree mechanism to aggregate the uti-
lization of parking lots. This system enables the driver to
receive information about available parking lots in the prox-
imity, but also about the situation in other districts.

The main purpose of VANETs is to increase the secu-
rity by warning other drivers of dangerous situations like an
emergency braking. It is obvious that due to the high risk
of misuse, such a network does not use an open architecture
that can be utilized to develop novel applications by every-
one. The main contribution of this paper is the presentation
of our technical solution to build such systems based on al-
ready deployed IEEE 802.11 devices like access points and
smartphones that primarily have another intended use.

The remainder of this paper is structured as follows: The
next section analyzes the mechanisms to exchange data pack-
ets between mobile devices like smartphones. Section 3 de-
scribes our novel approach called BSMX which allows the
easy data exchange in a 1-hop neighborhood. A proof of
concept implementation is described in Section 4. Section 5
explains an existing probabilistic data structure that can be
used for the in-network aggregation of sensor values. Our
novel data structure that is used in the BSMX system is de-
scribed in Section 6. Section 7 illustrates the results of our
simulation study. Finally, Section 8 summarizes the paper.

2. WIRELESS COMMUNICATION
Several mainstream wireless communication technologies

for handheld mobile devices like smartphones are available
on the market today. However, there is no established and
easy to use method available to exchange packets between
such devices without any using infrastructure. On the one
hand, smartphones are equipped with technologies like UMTS
and GSM, both using an area-wide infrastructure which is
controlled by telecommunication companies that offer the
access to the phone network and to the internet via their in-
frastructure. On the other hand, smartphones are typically
also equipped with Wireless LAN (WLAN) and Bluetooth.
The telecommunication companies have no incentive that
devices of their customers communicate directly with each
other without the usage of the companies’ infrastructure and
outside of their control. The situation of the second group of
technologies differs clearly, because in the most cases WLAN
and Bluetooth are self-governed by the device owners.

Most smartphones are equipped with a Bluetooth device
of class 2 or class 3 and have a very limited radio range. Two
devices need to be paired to communicate with each other.
The pairing process is typically triggered automatically the

first time a device receives a connection request. After both
users have entered the identical pin the two devices can ex-
change files or contact information. Multicast or broadcast
communication is only available if the devices operate in a
Bluetooth ad-hoc network which is called piconet. However,
the Bluetooth stacks of smartphones usually do not support
the required profiles to operate in ad-hoc mode. Therefore,
we focus the further discussion on IEEE 802.11 which is
intended as a general replacement for wired networks and
allows a more flexible configuration.

Although supported by IEEE 802.11, the ad-hoc mode
that allows a direct communication from one device to other
devices in radio range is rarely used in practice. We assume
that the complex configuration of ad-hoc networks is the
main reason for the current situation. IEEE 802.11 client
devices can start a search over all radio channels to find ac-
cess points and ad-hoc networks in radio range. If the user
wants to join a discovered network the device can adopt the
required network properties like SSID, radio channel and
encryption method from the selected network. However, to
create a new ad-hoc network the user has to configure the
device manually. Furthermore, the network requires a mech-
anism to assign unique IP addresses to all devices, and if
multi-hop communication is wanted a special ad-hoc rout-
ing protocol is required. Another issue is that many devices
cannot connect to an access point for Internet access and
communicate at the same time with other ad-hoc devices.
We are confident that most of these configuration problems
could be solved with the adoption and extension of exist-
ing technologies, but the tools the devices provide today
are not sufficient or far too complex. Another reason why
ad-hoc communication did not find the way to the market
yet is that no unique feature or killer application is avail-
able which requires it. Our conclusion is that the already
widely-used mobile Internet connections via UMTS are suf-
ficient to enable end-to-end communication between mobile
devices. However, we assume that an easy to use 1-hop data
exchange mechanism can generate a significant user benefit
and enable new types of applications.

3. BEACON-BASED SHORT MESSAGE EX-
CHANGE

The IEEE 802.11 standard defines a set of procedures to
create, join and maintain WLAN networks. These mech-
anisms require additional packets that are not forwarded
to the operating system. Furthermore, the standard allows
manufacturer-specific components in most of these manage-
ment packets. We have developed an IEEE 802.11-compliant
extension that allows user space applications to add short
messages to these management layer packets. Moreover, we
also developed a mechanism that forwards this user data to
the related application. A major advantage of our approach
is that it does neither require a common SSID nor negotiate
encryption settings or routing layer configurations. The idea
is that WLAN devices can operate without changing their
network and security configurations. We call this novel com-
munication method Beacon-based Short Message eXchange
(BSMX).

Access points and ad-hoc network nodes send unencrypted
beacon packets periodically, typically every 100 ms. Our ap-
proach can be utilized to add small-sized messages to these
beacon packets which are sent independently from the cur-

rent network load, anyway. This exchange method leads to
a heterogeneous radio channel configuration. However, the
distance between the IEEE 802.11b/g channels is 5 MHz
only, and the used channel width is 22 MHz. This overlap
and the used encoding technique allow the successful de-
coding of some packets which are transmitted on adjacent
channels by using a technique called overhearing. Network
devices drop such packets by default, but our BSMX system
uses this channel overlap to monitor a part of the frequency
band without changing the radio channel of the device. In
a comprehensive measurement study we analyzed the ex-
pected connectivity between indoor access points and a mo-
bile device on the street in an inner city environment [7].
The average reception rate is 53% for packets that are sent
on the same channel, 35% for packets that are sent on ad-
jacent channels and 4% for packets with a distance of two
channels. The low rate of 53% is caused by the fact that
most access points should only cover indoor areas, whereas
the measurement was performed on the street.

One drawback of this mechanism is the fact that mobile
devices like smartphones typically run in client mode and
hence they do not send beacon packets continuously. Thus,
a mobile device running in client mode can receive messages
from access points which operate on the same radio channel
but cannot send messages back or even communicate with
other client devices. Therefore, the extended version of our
approach utilizes the active scan procedure which is defined
in the IEEE 802.11 standard to discover access points in
the proximity. During such an active scan the device passes
through all radio channels to send probe request packets
that are answered from receiving access points by returning
a probe response packet. The BSMX system can add mes-
sages to both probe request and probe response packets and
can this way exchange small-sized messages between unas-
sociated WLAN devices that do not operate on the same
radio channel. This approach has the advantage that most
devices can conduct an active scan while they are connected
to an access point and smoothly resume the connection after
the scan.

4. IMPLEMENTATION
The chance that BSMX can find a way to the consumer

market highly depends on the complexity of its appropria-
tion. Therefore, a main design goal of the BSMX system
is to minimize required changes of existing software compo-
nents and work principles. This consideration is the reason
why BSMX utilizes the so called tagged parameter mecha-
nism of the IEEE 802.11 standard to extend already existing
management packets. This strategy has two important ad-
vantages: First, devices without BSMX support just ignore
unknown tags and discard the additional data without any
drawback or failure. The second advantage is that the ex-
tension of existing device drivers is comparatively easily and
can be done by including the source code of our extension
in less than hundred lines of code.

Figure 1 shows the system architecture. The BSMX ex-
tension is linked to the device driver and is running in ker-
nel space. We use Netlink (RFC3549) as communication
method between the extension and user space applications.
The advantage of Netlink compared to other communication
methods like ioctls is that it allows bidirectional communi-
cation and implements a multicast mechanism. The former
one is necessary to forward received messages to user space

WLAN Driver BSMX Extension

BSMX Daemon
Netlink

TCPTCP

App1 App2 App3

UDP/TCP

Kernel

User
Space

Space

Figure 1: BSMX System Architecture

without polling. We have implemented the extension for
the TNETW driver that is used by the majority of Android
devices and also for the open source driver MadWifi which
supports Atheros based chipsets.

The BSMX header specifies the message type as integer
value but does not implement an addressing schema. We
assume that most applications decide on the receiver’s side
whether they are a recipient. With respect to the broadcast
characteristics of the ether every transmitted message can be
received by every device in radio range. A new aspect is that
we move the decision whether a packet should be dropped
from the operating system to the application. However, it
is possible that more than one application is interested in
receiving this message. For this purpose we developed a
central daemon that implements the publish/subscribe pat-
tern and enables applications to subscribe the reception of
messages of a specified type via TCP. Applications can also
utilize the daemon to send messages over WLAN or to other
local applications. Furthermore, the daemon maintains a
neighbor table that can be accessed by all applications. The
central instance is also required to check the security set-
tings and deny unauthorized access to the WLAN device.
Additionally, the daemon provides a standardized interface
to several probabilistic data structures that can be utilized
by application developers.

The intention of this approach is to provide a complete set
of tools to create new types of applications. For instance,
an application can aggregate the sensor values of several
devises in the proximity before transferring the result to a
central server for further processing. This procedure would
help protecting the privacy of the application users. We
also assume that for many applications it would be sufficient
to know that two devices are close to each other without
knowing where they are.

5. FLAJOLET-MARTIN SKETCHES
A Flajolet-Martin sketch is a data structure for proba-

bilistic counting of distinct elements [3]. In this context an
element represents everything for that a hash value can be
calculated, e.g., a text string or a file. Please consider that
the data structure does not store the element itself. The ad-
vantage is that the required storage size of the sketch only
depends on the selected configuration parameters and does
not depend on the number of inserted elements. A higher
storage size leads to a better approximation of the number
of distinct inserted elements. Two parameters influence the
required storage size. M defines the accuracy and L the
number of distinct elements that can be inserted. For in-

stance, M = 128 and L = 16 leads to a storage size of 256
Bytes (128 · 16

8
). The sketch of this example can count about

530000 distinct elements and provides a standard error of
approximately 7% (0.78/

√
M).

An application X can add the integer value Y to a sketch
by inserting Y different elements. For instance, the applica-
tion can use the hash values of the strings ”X : 1” . . . ”X :
Y ”. In this scenario, the number of distinct values of the
sketch is equivalent to the sum of all inserted integer values.
For example, if two applications add values of Y1 = 25 and
Y2 = 50, the distinct number of inserted elements is 75. The
calculation of the average requires a sketch that stores the
sum of all integer values and one that stores the number of
inserted integer values. In the example of the parking lot
application named in the introduction, the capacity utiliza-
tion can be calculated by using two sketches. One contains
the number of available parking lots and the other one stores
the total number of parking lots.

The insertion process is deterministic and completely in-
dependent from the current state of the sketch. If one ele-
ment is inserted several times, the identical bit is set to one
each time. Hence, sketches are duplicate-insensitive and the
order of insert operations does not affect the estimation pro-
cess. These probabilities allow that sketches can be merged
by a simple bit-wise OR operation. The merged sketch can
be used to estimate the total number of distinct elements
that are added to any of the source sketches. This behavior
and the compact storage size are useful for the distributed
calculation of aggregation functions like COUNT, SUM and
AVG inside VANETs or sensor networks [2]. [6] introduce a
compression schema for sketches and [4] provides an aging
strategy that removes outdated elements from a sketch.

These approaches are suitable for the in-network aggrega-
tion of sensor values. For example, a smartphone application
wants to estimate the number of other devices in the 5-hop
proximity that also runs an instance of the software. In this
scenario every device maintains a sketch, adds the name of
the device itself, and sends the data structure via broad-
cast to other devices in radio range. Received sketches are
added to the own sketch via a bit-wise OR operation. Then
the application use an aging strategy (e.g., [4]) to remove
outdated entries and send the sketch again via broadcast
to other devices; these steps are repeated iteratively. After
several iterations each device can use the sketch to estimate
the number of running instances in the 5-hop proximity. The
number of hops is a setup parameter of the aging approach
that increases the required storage size of a sketch.

The described procedure is very simple and robust, and
does not require any knowledge about the topology. How-
ever, the same working principle can be used without sketches
by exchanging a list that contains tuples with the name of
a device and a time to live (TTL) counter. In this case,
each device maintains such a list and adds its own name
with the maximum TTL counter. The device decrements
the TTL counter of all entries beside its own entry and re-
moves entries with a TTL counter below zero before it sends
the list via broadcast to its neighbors. If a device receives
a list, it adds all unknown devices to its own list and up-
dates the TTL counter of already known devices. This way
each device can also estimate how many other devices in the
proximity run the application. However, this approach is
very limited because the size of the list will grow very fast.
For instance, if every device adds its own MAC address and

a TTL counter that can store four hops, every entry would
require 6 · 8 + 2 = 50 bits. With respect to the typically
used maximum transfer unit a list with 22 entries can be
transferred without fragmentation at most. Compared to
the sketch approach that can store several thousand entries,
a capacity of 22 is extremely small.

A serious drawback of the probabilistic approach is that it
is only suitable if the application can accept a standard error
of at least 5%. In our simulations, values of M > 256 do no
longer improve the accuracy significantly. Furthermore, the
accuracy can only be achieved if more than 15 ·M elements
are inserted. In other words the sketch we named before
requires 128 ·15 = 1920 entries to achieve the standard error
of about 7%. This behavior makes the configuration com-
plex and depends on the number of participating devices.
Another drawback is that the range of integer values that
can be inserted is very limited. The number of elements
that can be inserted to a sketch depends on its setup pa-
rameters. However, it is obvious that the insertion of 64-bit
values exceed the available range clearly. For these reasons,
we present in the next section a novel approach to calculate
and exchange aggregates.

6. BLOOM FILTER MAPS
Flajolet-Martin sketches are suitable to estimate aggre-

gation functions in large scale networks. However, in envi-
ronments with a low number of participants the accuracy
can decrease significantly. Another limitation is that a more
complex aggregation can only be reproduced by using sev-
eral sketches. This section presents a novel approach that
overcomes these limitations and offers further advantages.

In the last section, we briefly described the distributed es-
timation of the number of participating devices by exchang-
ing a list with device names and TTL counters. The sum
or the average can be estimates by adding the sensor values
to the related list entries. If we assume that it is typically
suitable to use a range of 0 . . . 255 as sensor value and 1 . . . 8
as hop range, each entry needs 6 · 8 + 8 + 3 = 59 bits. It is
obvious that the largest fraction of storage is used to identify
the owner of the entry. The main idea of our approach is
to substitute this identifier by a probabilistic replacement.
Keep in mind that the hashing of the MAC address is a prob-
abilistic method that can lead to hash collisions. However,
the reduction of the storage amount achieved by hashing is
not sufficient.

Bloom filters are a well-known data structure that is used
to test whether an element is a member of a set. False
positives are possible, but false negatives not. A Bloom
filter is bit field B = b0 . . . bN−1 of a length N > 0 and is
initialized with zeros on every bit position. An element E
is added by setting bit bX with X = hash(E) mod N to
one. A similar procedure is also used to test whether an
element was inserted before. If the tested bit is one, the
element is member of the set or a collision had occurred
(false positives). However, if the bit is zero, the element
was definitely not inserted. The false positive rate can be
reduced by utilizing more than one hash function, but we
will focus on the approach with one hash function only.

It is possible to extend the array positions from a single
bit to an n-bit counter. In our approach, a counter of zero
means that there is no entry; otherwise the counter repre-
sents the TTL of the entry. To come back to the uncom-
pressed list from the beginning of this section, the identifier

0 4 00 5 0 1 0 2 0 0

0 1 2 3 4 5 6 7

...

N-3 N-2 N-1

13 89 201 145...Values:

BF:

Figure 2: Bloom Filter Map

corresponds to the position inside the Bloom filter and the
TTL counter corresponds to the counter at the related posi-
tion inside the Bloom filter. The order of non-zero counters
is used to maintain an additional list which contains the con-
tent of the entries, e.g., the sensor vales. We call the Bloom
filter with TTL counters and value list Bloom Filter Map
(BFMap). Two BFMaps can be merged by performing a
MAX operation on every position of the related Bloom fil-
ters and arranging the corresponding values to a new list. If
two positions have a non-zero counter, this process prefers
the newer one. Figure 2 shows an exemplary BFMap. The
upper part of the figure shows the Bloom filter with TTL
counters and the lower part the list of related values.

It is obvious that several entries could be mapped to the
identical position inside the Bloom filter. This represents
the probabilistic part of our approach. The probability of
such a collision increases with the number of already in-
serted entries and decreases if the size of the Bloom filter
is increased. The interesting aspect here is that the en-
largement of the Bloom filter only slightly increases its en-
tropy. If the probability of each symbol of a data stream is
known, the well-known arithmetic coding approach [9] can
be utilized to compress the data stream entropy-optimal. A
Bloom filter with T -bits TTL counters consists of the sym-
bols 0 . . . (2T − 1). Assume that count(X) is a function that
returns the number of occurrences of the symbol X inside a
Bloom filter, then the probability of each symbol can be cal-
culated by count(X)/N . If a device receives a compressed
Bloom filter, N and a list of count(X), X ∈ 0 . . . (2T − 1),
it can decompress the data structure. It is sufficient to use
16-bit unsigned integer values to store and transmit N and
the counters.

7. EVALUATION
In [7] we estimated the connectivity of access point among

each other in the inner city of Mannheim, Germany. In the
following, we will use this very dense network to conduct a
simulation study to estimate the accuracy and the required
storage size of the BFMap approach. The simulator creates
for each of the 3797 simulation nodes a BFMap and inserts
a tuple based on a random integer value and the maximum
TTL Tmax. In the next step, the simulator adds to the
BFMap of each node the values of their neighbors with a
shortest path of x hops (x ∈ 1 . . . Tmax) with a TTL of T−x.
This procedure emulates the TTL reduction, the exchange,
and the joining process of BFMaps. Finally, the simulator
compares the created BFMaps with the real situation. The
comparison includes the number of neighbors (COUNT), the
sum of random values (SUM) and the calculation of the av-
erage value (AVG). Furthermore, the simulator compresses
each BFMap and determines its compressed size. Figure 3
shows extracts of the average results of 150 simulation runs
each using 3797 nodes.

The average size of a compressed Bloom Filter entry de-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 4096 8192 12288 16384 20480 24576 28672 32768
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13
S

iz
e

[B
y
te

]

E
rr

o
r

[%
]

TTL Counters inside the Bloom Filter [Number]

Bytes per Compressed Bloom Filter Entry (TTL=4)
Bytes per Compressed Bloom Filter Entry (TTL=7)

Count and Sum Error (TTL=4)
Count and Sum Error (TTL=7)

Average Error (TTL=4)
Average Error (TTL=7)

Figure 3: Simulation Results

pends on the number of inserted elements, the capacity N
of the filter, and the range of the TTL counters. In our
simulation environment the maximum TTL determines the
number of neighbors inside the TTL limit and thus it also
defines the number of inserted elements. Figure 3 shows the
average entry size for a maximum TTL of 4 (141 entries) and
7 (520 entries) respectively. This size includes the identifier
and the TTL counter of a node but not its value. Thus, if
one byte per value is used, the full size of the BFMap entry
is also increased by one byte. Although the compression of
a higher maximum TTL requires more symbols, the aver-
age entry size of the TTL=7 example is lower compared to
TTL=4. The reason for this behavior is that the required
storage space of the zero TTL counters is distributed across
more inserted entries.

The results show that the usage of a BFMap with 8192
TTL counters is a good trade-off between size, computa-
tional complexity, and accuracy. The average count and sum
error of this setup is about 1% with 141 entries and 3% with
520 entries. An interesting aspect of the BFMap approach
is that even in the case of collisions the newly inserted ele-
ment only overwrites an existing entry without influencing
the other elements. In other words, the number of collected
samples to calculate an aggregation is reduced by one, but
all remaining samples are unchanged. This effect causes the
small error of the average calculation. We run simulations
based on uniformly and normally distributed random values,
but the differences were marginal, and therefore the figure
shows the former one only.

The presented BFMap data structure is well suited for the
distributed calculation of aggregation functions. The advan-
tage is that a developer can use real values for the calculation
and is not limited to basic functions like COUNT, SUM and
AVG. In addition, the developer controls the size and type of
the values used and decides which accuracy the application
requires. For instance, the developer can use a quantization
method to reduce the required size per value. Furthermore,
the BFMap can be used to maintain and exchange applica-
tions states or other kind of data that is not intended for
aggregation purposes. Contrary to Flajolet-Martin sketches
BFMaps do not require a minimum of inserted elements to
work properly. However, the size of a BFMap increases with

number of its entries in a linear way, and thus they are not
suited to calculate and exchange aggregates of several thou-
sand entries.

8. CONCLUSION
We present our BSMX system that can be utilized to

create novel applications without complex device configu-
ration or significant impairment of the device’s main func-
tions. Our approach also allows the development of hybrid
applications that communicate via WLAN and Internet. A
sample application could be to exchange public IP addresses
via WLAN for further communication or to detect the close-
ness of other devices without GPS and central server. Fur-
thermore, we presented a novel probabilistic data structure
that can be utilized to aggregate sensor data in a distributed
manner. The data structure is also used by our prototype
to maintain a multi-hop neighbor table which is accessible
to subscribed applications. In future work, we will improve
our prototype implementation and make it available under
an open source license.

9. REFERENCES
[1] M. Caliskan, D. Graupner, and M. Mauve.

Decentralized discovery of free parking places. In
VANET ’06: Proceedings of the 3rd international
workshop on Vehicular ad hoc networks, pages 30–39,
New York, NY, USA, 2006. ACM.

[2] J. Considine, F. Li, G. Kollios, and J. Byers.
Approximate aggregation techniques for sensor
databases. Data Engineering, 2004. Proceedings. 20th
International Conference on, pages 449–460, April 2004.

[3] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput. Syst.
Sci., 31(2):182–209, 1985.

[4] C. Lochert, B. Scheuermann, and M. Mauve.
Probabilistic aggregation for data dissemination in
vanets. In VANET ’07: Proceedings of the fourth ACM
international workshop on Vehicular ad hoc networks,
pages 1–8, New York, NY, USA, 2007. ACM.

[5] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode.
Trafficview: traffic data dissemination using car-to-car
communication. SIGMOBILE Mob. Comput. Commun.
Rev., 8(3):6–19, 2004.

[6] B. Scheuermann and M. Mauve. Near-optimal
compression of probabilistic counting sketches for
networking applications. In Dial M-POMC 2007:
Proceedings of the 4th ACM SIGACT-SIGOPS
International Workshop on Foundation of Mobile
Computing, Aug. 2007.

[7] S. Schnaufer, S. Kopf, H. Lemelson, and W. Effelsberg.
Beacon-based short message exchange in an inner city
environment. In 9th IFIP Annual Mediterranean Ad
Hoc Networking Workshop (Med-Hoc-Net 2010), June
2010.

[8] L. Wischhof, A. Ebner, H. Rohling, M. Lott, and
R. Halfmann. Sotis - a self-organizing traffic
information system. Vehicular Technology Conference,
2003. VTC 2003-Spring. The 57th IEEE Semiannual,
pages 2442–2446 vol.4, April 2003.

[9] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
coding for data compression. Commun. ACM,
30(6):520–540, 1987.

