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Abstract. Indoor positioning systems based on 802.11 and fingerprints
offer reasonably low position errors. We study the key factors for position
errors by systematically investigating (1) the number of access points,
(2) the number of samples in the training phase, (3) the number of sam-
ples in the position determination phase, and (4) the setup of the grid
of reference points. Further, we squeeze out the best of the positioning
system by selecting advantageous values for these parameters. For our
study, we utilize a test environment with a size of about 312 square
meters that is covered with 612 reference points arranged in an equally
spaced grid.

1 Introduction

During recent years, we have seen considerable improvements in down-sizing
computer hardware and in increasing the capacity of rechargeable batteries, as
well as the advent of wireless networks for the mass markets. These technologies
allowed manufacturers to build mobile devices that have a similar performance as
desktop computers had several years ago. The benefit of these mobile devices can
be leveraged by so-called location-based services: Applications that act differently
depending on the position of the user or, even better, pro-actively offer location-
dependent information to the user. Location-based services are currently a hot
topic in research, and are considered to be a promising market.

Nowadays, the Global Positioning System (GPS) [1] is the predominant out-
door positioning system. Though GPS works well in many outdoor scenarios,
it suffers from obstacles such as skyscrapers creating shielded street canyons or
walls and ceilings blocking the radio signals indoors. One of the most promis-
ing technologies that could be an equivalent to GPS for indoor applications
are 802.11-based positioning systems [2] [3]. Lately, 802.11 hardware is readily
available and installed nearly everywhere where people live and work. Another
important fact is that 802.11 can be used for communications as well as for
positioning purposes at the same time. Even better, almost all modern PDAs,
cellphones and laptops are capable to communicate with the 802.11 infrastruc-
ture because they are shipped with built-in 802.11 hardware.



The most promising 802.11-based positioning systems utilize the so-called
fingerprint approach [2]. This technique comprises two stages: An offline training
phase and an online position determination phase. During the offline phase,
the signal strength distributions are collected from access points at pre-defined
reference points in the operation area. They are stored in a table together with
their physical coordinates. An entry in this dataset is called a fingerprint. During
the position determination phase, mobile devices sample the signal strengths of
access points in their communication range and search for similar patterns in
the fingerprint data. The best match is selected, and its physical coordinates are
returned as the position estimate.

Recent research has mainly focused on algorithms that compute the best
match (e.g., [4] [5] [6]). Although, the authors of these papers provide experi-
mental results and compare their own work to existing approaches, they neglect
an in-depth analysis of the impact of different factors for position errors. To our
knowledge, this paper is the first to present a detailed analysis of key factors
causing position errors. The questions we seek answers to are the following;:

How does the number of access points influence position errors?

What is the impact of the number of training set samples on position errors?

— What is the impact of the number of online samples on position errors?

— How does the grid spacing and starting point of the grid of reference points
contribute to position errors?

— What is the lower bound of the average position error achievable with a

802.11-based positioning system if all parameters are set to the best possible

values?

Answers of the above questions have implications on the planning, deploy-
ment and administration of 802.11-based positioning systems. Furthermore, our
analysis will also be helpful for the research area of position determination algo-
rithms.

We use our test environment on the entire floor of an office building on the
campus of the University of Anonymity to carry out our study. Although we have
worked with only one test environment, the consistency of parts of our results
(e.g., number of samples) with results published by other researchers indicates
that the conclusions we draw are indeed meaningful. Further, we selected the po-
sition determination algorithm proposed by Haeberlen et al. [6] because it shows
the best performance. However, we also performed tests with other algorithms
(e.g., [2] [7]) and our spot checks indicate that the results are also applicable to
these algorithms.

Our results are as follows:

— The number of access points is a primary factor in determining position
erTors.

— For the training phase, 20 samples at each reference point are sufficient.

— For the number of samples in the position determination phase, no single
value can be determined. The trade-off here is about improved position errors



and the time required to calculate a position fix. Thus, for a positioning
system running in tracking mode, a high frequency of position updates is
required and hence we recommend three samples. Otherwise, 15 samples
lead to the best position errors.

— Although, a grid spacing of 0.5 meters leads to the best results, the amount
of time required to collect the data for the training phase is hardly bearable.
Again, we have to trade position error against time. So, we recommend a grid
spacing between 1.0 and 2.5 meters. An operator can select a grid spacing
in this range depending on the amount of time he is willing to spend and
the position accuracy he is expecting. To find a suitable starting point for a
given grid spacing we provide an algorithm.

— We observed a bottom line of 2.0 meters for the average position error, even
if we select advantageous values for the parameters.

The rest of the paper is organized as follows. The next section (Sec. 2)
presents the related work. In Sec. 3 we describe our experimental setup and
methodology in-depth. Subsequently, Sec. 4 presents a detailed analysis of vari-
ous values for particular parameters we have identified as key factors for position
errors. In Sec. 5, we discuss the implications that can be drawn from the results
we observed. We conclude the paper in Sec. 6.

2 Related Work

In their preliminary work Bahl et al. proposed the first 802.11-based indoor
positioning system [2]. In this paper, the authors provided a few experimental
results and mainly focused on position determination algorithms. A few months
later, Bahl et al. released a technical report [8] that offers additional experimen-
tal results and more position determination algorithms. Although the authors
provide results from a second test environment they mainly focus on a tracking
algorithm.

In contrast to the algorithms presented by Bahl et al., Castro and Muntz
came up with the idea of using probabilistic algorithms [3]. In [7] and [6], two
groups from Rice University have embraced this idea and proposed two proba-
bilistic algorithms. The first algorithm requires a histogram of signal strength
samples at each reference point resulting in huge piles of data. In their second
approach, the histograms are replaced with Gaussian distributions to alleviate
the burden of handling large amounts of data. Furthermore, the Gaussian ap-
proximation makes their system more accurate.

Moustafa and Agrawala show in a mathematical analysis that probabilistic
approaches outperform deterministic position determination algorithms [9]. Fur-
ther, Moustafa et al. propose different algorithms for the position determination
and for the tracking of users [10] [4].

Although all these papers mainly focus on the algorithms to determine the
position of users and most of them provide experimental results, none of them
systematically investigates the key factors leading to position errors.



3 Experimental Setup and Measurement Methodology

In this section, we first briefly describe our experimental environment (Sec. 3.1).
We then present the hardware and software setup (Sec. 3.2). Subsequently, we
report how we collected the data used in the experiments. Finally, we describe
the overall experimental methodology (Sec. 3.4).

3.1 Local Test Environment

We deployed the positioning system on the second floor of an office building
on the campus of the University of Anonymity. The operation area is nearly
15 meters in width and 36 meters in length, covering an area of approximately
312 square meters. The floor plan of the operation area is shown in Fig. 1. The
large hallway in the left part of the map is connected by two narrow hallways
that are separated by rooms such as a copier room, an archive and a kitchen. The
rooms depicted on both sides of the narrow hallways are mainly used as offices,
and due to access restrictions they could not be included into the operation area.
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Fig. 1. Floor plan of the local test environment. The operation area is painted
in gray. The blue markers represent the offline reference points and the purple
markers show the randomly selected online points. The access points are marked
by orange circles and an orange ring.

3.2 Hardware and Software Setup

Initially, the test environment was covered by one Linksys / Cisco WRT54GS
and two enterasys RBT-4102-EU access points administered by the computer
center of our university. We additionally installed 11 access points: Two D-Link
DWL-G700AP, three NETGEAR WG102, and six Linksys / Cisco WRT54G



access points. All access points support 802.11b and 802.11g. Except of one
enterasys access point, all access points are located on the same floor as our
operation area. This particular enterasys access point is placed on a lower floor,
however, it covers the operation area completely. The position of this access
point is marked by an orange ring and the positions of the other access points
are marked by orange circles (see Fig. 1).

As a client, we used a Lucent Orinoco Silver PCMCIA network card support-
ing 802.11b. This card was plugged into an IBM Thinkpad R51 running Linux
kernel 2.6.13 and Wireless Tools 28pre. To collect signal strength samples, we
implemented a framework that contains two parts: A library that cooperates
with the network card driver to perform scans and capture internal driver in-
formation [11], and an easy-to-use application that stores these information in a
file together with additional data such as the physical position and a timestamp.
Further, the application configures the library to select a scan frequency and
scan technique for the signal strength measurements. For our experiments we
used active scanning. Active scanning is defined in the 802.11 standard [12] and
it is a technique to find a suitable gateway to the Internet by measuring the
signal strength of access points within communication range.

From the driver our library collects the following information for each device
that replies to an active scan:

MAC address of the device

received signal strength

— noise level

— mode of the device (i.e. access point or ad-hoc)
frequency used for the communication

Although only the MAC address, mode and received signal strength values are
required by 802.11-based positioning systems, we stored the additional informa-
tion for further analysis and debugging purposes.

3.3 Data Collection

The grid of reference points applied to the operation area includes 612 points
with a spacing of 0.5 meter (see the blue markers in Fig. 1). During the offline
phase, we collected 110 signal strength samples at each reference point, resulting
in 72,600 samples in total. We spent over ten hours to collect all the data,
however, we want to point out that for a productive deployment of a positioning
system 20 signal strength samples and a grid with grid spacing of 1.5 meters will
be sufficient (see Sect. 4), cutting down the expenditure of time to less than half
an hour.

For the online phase, we randomly selected 83 coordinates. The only condition
to select a point inside the operation area as a online point is that it is surrounded
by four reference points of the grid. Again, we collected 110 signal strength
samples for each online point, leading to 9,460 samples in total. In Fig. 1 the
online points are marked by purple dots.



3.4 Experimental Methodology

Metrics and Parameter Space. For our experiments, we consider a two-
dimensional operation area. We define position error as the Euclidian distance
between the real physical position and the estimated position. Based on this
definition, we consider two metrics during our experiments:

— average position error
— standard deviation of the position error

The former metric is also called accuracy, the latter is sometimes named preci-
sion. Both metrics are important because users need highly accurate and precise
position estimates.

We have identified the parameter space for our measurements as follows:

— Number of access points: To study the impact of the number of access points,
we vary the number of enabled access points between one and 14.

— Number of training set samples: The time required to collect the training set
can be approximated by the number of reference points times the number
of signal strength samples at each reference point. To lower the deployment
burden of fingerprint-based positioning systems, time requirements should
be minimized. For this, it is mandatory to know how many samples at each
reference point are required during the training phase to produce stable po-
sition estimates. Therefore, we varied the number of signal strength samples
from one to 110.

— Number of online samples: The number of online samples required to cal-
culate a position estimate determines the time how often position updates
are available to the user. Typically, a wireless network card requires at least
250 milliseconds to perform an active scan, so, the time between two posi-
tion updates is a multiple of 250 milliseconds, depending on the number of
samples used. For this, we also varied the number of online samples between
one and 110.

— Grid spacing: As previously mentioned, the time required to collect the train-
ing set depends on the number of reference points. For a given operation area,
the number of reference points depends on the grid spacing and the starting
point of the grid. If the grid spacing is doubled, the number of reference
points is approximately square rooted. The grid of reference points that cov-
ers our operation area has a grid spacing of 0.5 meters, allowing us to vary
the grid spacing between 0.5 and 4.0 meters in 0.5 meter steps.

— Starting point of the reference grid: As mentioned in the last item, the num-
ber of reference points also depends on the starting point of the reference
grid. Especially, in obstacle indoor areas, different starting points might lead
to various ways the operation area is covered with reference points. To study
the impact of the starting point, we varied the starting point for grids with
a spacing larger than 0.5 meters.



Experiments. To investigate each parameter of the parameter space we use the
data we have collected as described in Sect. 3.3. We developed a software-suite
called Loceva [13] to switch off different values of particular parameters, so that
we are able to quickly emulate various scenarios. This approach allows us to
study scenarios that could otherwise hardly be investigated due to the enormous
amount of time it would take to carry them out.

We define a basic experiment that is used as a basis for the subsequent studies.
If a study of a particular parameter requires an extension of the basic experiment,
the changes are described in the according section. The basic experiment is
defined as follows:

— Nine access points are used.

— For each reference point, 20 offline samples are randomly selected out of the
110 samples.

— For the online phase, three samples are randomly chosen from the 110 sam-
ples for each coordinate.

— A grid spacing of 1.0 meter is applied.

— The starting point of the grid is set 0.5 meters north (relative to the point
of origin).

This basic experiment is repeated 1000 times to achieve statistically stable
results. We now present the various experimental results.

4 Experimental Results

In this section, we first present the impact of the number of access points on
position errors (Sec. 4.1). Subsequently, we discuss the influence of the number
of samples in the training phase as well as in the position determination phase on
position errors. In Sec. 4.4, we present the results of the experiments with various
grid spacings and starting points. The best is squeezed out of the positioning
system in the last subsection.

4.1 Number of Access Points

To investigate the effect of different numbers of access points on position errors,
we extend the basic experiment by varying the number of access points between
one and 14. For this, we randomly select the particular number of access points
out of the 14 access point covering the operation area.

Figure 2(a) shows the average position error and its standard deviation with
respect to the number of access points. As expected, the average position error
decreases with an increasing number of access points. Furthermore, we see a
marginal utility for each access point added. For instance, the position error
drops from about 7.2 meters to about 4.8 meters if the number of access points
is increased from one to two. This corresponds to a reduction of more than
2.4 meters or 33 percent. If the number of access points is further increased the



reduction is about one meter (from 4.77 to 3.74 meters). If we make a large step
and add the 10" access point we see that the average position error is reduced by
about only nine centimeters (from 2.65 to 2.56 meters). Furthermore, not only
the average position error decreases, but also does the standard deviation. For
example, the standard deviation is about 4.6 meters when two access points are
used; it is reduced by about 1.4 meters to 3.1 meters in case three access points
are available. And again, the standard deviation shows an similar diminishing
utility as seen by the average position error.
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(a) The effect of the number of access  (b) The cumulative distribution function
points on position errors. of position errors for 3 and 9 access
points.

Fig. 2. The impact of the number of access points on position errors.

From the literature we know that in areas of the developed world where peo-
ple live and work it is common to see on the average three access points [14] [15].
So, with three access points, an average position error of about 3.7 meters is
achievable. If we are trying to reduce the average position error by 33 percent
(that corresponds to 1.2 meters), at least an additional six access points are
required. Unfortunately, in the scenarios described in the literature, such a high
number of access points is quite uncommon, however, in some environments such
as multi-story buildings or universities, it is typical to see dozens of access points.
Even better, access points are quite cheap nowadays, allowing a positioning sys-
tem operator to deploy additional access points just for the matter of positioning
accuracy.

To get a deeper understanding of what the position error distribution for
the three and nine access points scenarios look like, we printed the cumulative
distribution function in Fig. 2(b). From this figure we see that in 95 percent of
all cases the position errors are smaller than 6.5 meters if nine access points are
used. If only three access points are utilized, position errors are smaller than
8.7 meters in 95 percent of all cases. It is important to note that not only the
average position error is of interest if we compare positioning systems. Important
is also the length of the tail of the distribution. Thus, we see that the largest
position error is about 12.85 meters for nine access points and 33.23 meters for
three access points.



For the basic experiment we have chosen nine access points. Nine access
points are more than what we usually encounter, however, we selected this num-
ber because we think operators may install extra access points for the sack of
position accuracy. We selected the eight access points located in the hallways be-
cause this is the place where network operators usually install these devices. The
ninth access point is the one installed in the large office in the south-west part
of the map. However, the location of the access points is of minor importance
because our results show that a particular selection of the nine out of the 14
access points influences position errors only slightly (about a few centimeters).

4.2 Training Set Size

In the training phase, an operator walks from reference point to reference point
and collects signal strength samples. Therefore, two factors mainly determine
the time required to collect the training data: The number of reference points
and the number of offline samples taken at each reference point. The impact of
the former on position errors is discussed below. The latter is the objective of
this section.

Usually, active scanning is used to collect signal strength samples of access
points within communication range. A typical wireless network interface requires
250 milliseconds to complete a scan. Thus, decreasing the number of samples
required at each reference point directly reduces the time required to gather the
training data.

To see how the training set size affects the positioning accuracy we conducted
an experiment that extended the basic experiment by varying the number of
offline samples. We start with one offline sample. Next we select five samples.
Further, we increase the samples in steps of five up to 110.

As we see from Fig. 3(a), the average position error drops from 4.36 meters
to 2.78 meters in case the number of offline samples is increased from one to five.
Further, we see a constant decrease of the average position error if the number of
offline sample is increased. However, at around 20 samples the marginal utility of
adding five additional samples is less than one centimeter, or in other words the
average position error only decreases by less than one centimeter if another five
samples are added. Not only the average position error is saturated at around
20 samples, also the standard deviation decreases only slightly in case additional
samples are collected. This being said, we see that taking more than 20 offline
samples is not worth the effort. This is why, we selected 20 samples for the
training set size of the basic experiment.

4.3 Omnline Set Size

In this section, we focus on the online phase and analyze the impact of the num-
ber of signal strength samples on position errors. This is interesting to know be-
cause the number of samples determines the time required to calculate a reliable
position estimate. As mentioned in the previous section, a common 802.11 wire-
less network card takes 250 milliseconds to measure the signal strength of access
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Fig. 3. Average and standard deviation of position errors depending on the
number of online and offline samples, respectively.

points within communication range and hence the time to calculate a position
fix is a multiple of 250 milliseconds.

The basic experiment is extended in such a way that we vary the number of
online samples from one to 110 for this experiment. In the range between one
and 20 we investigate every single step, whereas we use an increment of five in
the range of 20 to 110.

Figure 3(b) depicts position errors with respect to the number of online
samples. We present average and standard deviation because we want to see if
an large number of online samples impacts these two measures. Unfortunately,
the standard deviation is more or less unaffected by the number of samples.
With one signal strength sample the standard deviation is about 2.03 meters
and it drops to 1.82 meters if the signal strength is sampled four times. In the
range of four to 110 samples, the standard deviation varies only between 1.82
and 1.73 meters.

We see a similar behavior with the average position error. With only one
signal strength sample the average position error is about 2.79 meters, but it
drops down to 2.49 meters if three signal strength samples are collected. If the
number of signal strength samples is further increased the average drops only
slightly and we see a diminishing marginal utility. For instance, with 20 samples
an average position error of about 2.4 meters is achievable and with 110 samples
the position error is on average 2.37 meters.

For the default online set value in the basic experiment, we have to make a
trade-off. On one hand, we are interested in the best possible position estimate
and on the other hand we want position updates as often as possible. Especially,
if the positioning system is running in tracking mode, position updates should
be offered quite frequently. For this, we select three samples as the default value
because it trades time against position error in such a way that waiting an-
other 250 milliseconds improves the average position error by only about two
centimeters whereas the last scan improved the error by about nine centimeters.
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4.4 Grid Setup

As stated in Sect. 4.2, one of the factors that determines how much time it takes
to collect the training data is the number of reference points. In the literature,
most authors utilize an equally spaced grid of reference points to cover the
operation area. This makes the whole process quite easy and does not require
any further operator interaction. An equally spaced grid is defined by a starting
point, the grid spacing, and the angle of the grid alignment. To simplify the
scenario we assume that the grid is aligned in the same way as the building that
comprises the operation area.

Although the grid spacing is a relevant factor, it is also important to pay
attention to the starting point of the grid. Especially, in indoor scenarios we
usually face a lot of obstacles (e.g., cabinets, tables or locked rooms) that frag-
ment a floor into subareas. Therefore, the starting point of a grid may determine
the size of the area a reference point is associated with. For instance, our test
area contains three connected hallways. The small rooms (the copier room, the
kitchen, and the archive) in the middle of the virtual large hallway chop it into
two narrow hallways that are linked by spaces between the rooms. So, if we
overlay such fragmented areas with a grid that utilizes a given grid spacing, it
may occur that different numbers of reference points can be deployed depending
on the starting point of the grid. Figure 4 illustrates an example of two grids
with a grid spacing of 2.0 meters using different starting points. The grid in
Fig. 4(a) covers the operation area with 51 reference points, whereas the grid in
Fig. 4(b) comprises only 19 reference points. The starting points for these grids
are shifted 0.5 meters north, 1.0 meters east and 1.5 meters north, 0.5 meters
east, respectively.

An investigation of the impact of the starting point and the grid spacing on
position errors is the subject of this section.

i
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(a) This grid contains 51 reference points.  (b) This grid contains 19 reference
The starting point is moved 0.5 meters  points. The starting point is moved
north and 1.0 meters east compared to 1.5 meters north and 0.5 meters east com-
the point of origin. pared to the point of origin.

Fig.4. Two grids of reference points with a grid spacing of 2.0 meters but
different starting points.
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Starting Point. We define the point of origin by selecting the bottom left
reference point of the 0.5 meter spaced grid (see Fig. 1). Based on this point
of origin and the 0.5 meters spaced grid of 612 reference points we derive grids
with different starting points and grid spacings between 1.0 and 4.0 meters. For
instance, four different 1.0 meter spaced grids can be created by selecting only
every other reference point and by moving the starting point 0.5 meters north,
east or both.

In the following we selected a grid spacing of 2.0 meters because this scenario
can easily be described and shows a tendency that is valid for all other grid
spacings as well. With such a grid spacing, 16 starting points can be selected.
Depending on the starting point, different numbers of reference points can be
applied to the operation area. Table 1 lists the various starting points and the
corresponding number of reference points.

Table 1. This table shows the number of reference points for different starting
points of 2.0 meter spaced grids. The first value of the starting point column
represents the north offset, the second value the east offset.

Starting point‘# reference points Starting point‘# reference points
0.0, 0.0 41 1.0, 0.0 34
0.0, 0.5 26 1.0, 0.5 21
0.0, 1.0 50 1.0, 1.0 43
0.0, 1.5 47 1.0, 1.5 42
0.5, 0.0 44 1.5, 0.0 33
0.5, 0.5 30 1.5, 0.5 19
0.5, 1.0 51 1.5, 1.0 42
0.5, 1.5 48 1.5, 1.5 41

From the table we see that the number of reference points varies between 19
and 51, or in other words, depending on the starting points of the grid up to
37 percent of the maximum number of reference points are available. Examples
for these extremes are depicted in Fig. 4(a) and Fig. 4(b), respectively.

Although a small number of reference points means that the time required for
the data collection phase can be reduced, we expect position errors to increase
because each reference point is responsible for a larger region of the operation
area. In the following, we investigate this question. For this, we extend the
basic experiment by selecting a grid spacing of 2.0 meters and select starting
points as listed in Table 1. Figure 5 shows the average position error grouped
by the number of reference points. The average position error is between 2.71
and 3.23 meters. 2.71 meters are achieved in case of 50 reference points and
3.23 meters in case of 43 reference points. Furthermore, from the graph we see
that the average position error slightly improves if the number of reference point
is increases. This tendency is not strictly consistent. For instance, the case of
43 reference points is an outlier.
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Fig. 5. Average position error vs. number of reference points.

If we look at different grids of reference points and how they fit into the op-
eration area we see that for some grids there are large areas that are not covered
by any reference point. Other grids cover the operation area more ”smoothly”.
For instance, in Fig. 4(b) we see that the two horizontal hallways are not covered
at all by any reference points whereas in Fig. 4(a) the operation area is more
evenly covered. If we further relate the average position error to the smoothness
of arrangement of reference points it follows that smoother grids achieve better
position errors. For example, the smooth grid of Fig. 4(a) achieves an average
position error of 2.87 meters in contrast to the rough grid of Fig. 4(b) that
achieves on 3.17 meters on the average.

It is relatively easy for a human to decide which scenario shows the smoother
arrangement of reference points if two scenarios are given. To let the computer
take the same decision, we conceived the following algorithm: Randomly select
312 points inside the operation area and add up, for each of these points, the
distance to its closest reference point. The scenario with the smaller result is
the one with the smoother grid arrangement. We selected 312 points for our
312 square meter operation area. We achieved great results by sticking to the
one point for one square meter rule during our tests.

This algorithm can be used to determine which starting point leads to the
smoothest grid and therefore to a small average position error. We verified the
practicability of this approach by letting the algorithm select the starting point
of the smoothest grid and then we compare the average position error of this
grid with the other grids. For all grid spacings between 1.0 and 4.0 meters, the
algorithm selected a starting point that leads to a grid that achieved at least the
third best average position error.

In many real-world deployments there will be no pre-defined starting points
to choose from (as in our case). The operator can manually select a few possible
starting points and use the approach described above to find the best suitable
starting point for the operation area in question.

Grid Spacing. In this section, we focus on the grid spacing and how it impacts
the precision and accuracy of the positioning system. For this, we vary the grid
spacing of the basic experiment from 0.5 meters stepwise by 0.5 meters until
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a spacing of 4.0 meters is reached. For all grid spacings larger than 0.5 meters
we applied the technique described in the previous section to select a suitable
starting point.

From Fig. 6 we see that with a grid spacing of 0.5 meters an average position
error of 2.33 meters and a standard deviation of 1.73 meters is achievable. In
case a grid spacing of 4.0 meters is applied the average position error goes up
to 2.97 meters and the standard deviation increases slightly to 1.98 meters.
Each time the grid spacing is increased by 0.5 meters the average position error
increases between 3 and 11 centimeters. This is interesting to notice because if we
assume a perfect positioning system that always finds the closest reference point
then the average position error should increase 19 centimeters each time the
grid spacing is increased by 0.5 meters!. We call this error the inherent position
error. Real-world positioning systems are usually not perfect and this is why a
second kind of error adds to the position error: the error caused by selecting a
reference point that is not closest to the user’s real position. This second part
is dubbed the real position error. Coming back to the observed position errors,
it follows that the real position error decreases if the grid spacing is increased.
Or in other words, the positioning system is getting better in finding the closest
reference point if the grid spacing is increased.

05 10 15 20 25 30 35 40

Grid spacing [m]

Fig. 6. Average and standard deviation of position errors w.r.t grid spacing.

Figure 7 shows the average signal strength at each reference point for one
access point. We selected grid spacings of 0.5 and 2.0 meters to exemplify why it
is getting easier for the positioning algorithm to find a closer reference point if the
grid spacing is increased. From the figures we see that the number of at least two
reference points that share the same average signal strength is decreasing if the
grid spacing is increased. If we count only the reference points that do not share
their signal strength value with other reference points, we see that in our sparse
example nine such reference points can be found. This corresponds to 18 percent
of all reference points. In contrast, the example with the 0.5 meter spaced grid
contains only five such reference points or 0.008 percent of all reference points.

! Let z and y be random variables € [0,...,a = 974sPacing] then the average posi-
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(a) A grid spacing of 0.5 meters is used  (b) In this scenario a grid spacing of
in this scenario. 2.0 meters is applied.

Fig. 7. Two maps with different grid spacings show the average signal strength
at each reference point for one access point. The position of the access point is
marked by an orange circle.

As already mentioned, the number of reference points is one factor that
mainly determines the time require to collect the data in the offline phase. From
the previous section we know that the exact number of reference points depends
on the shape of the operation area as well as on the inside the operation area.
However, for an operator it might be interesting to get a rough estimate of the
number of reference points that might cover the operation area. Especially in
large deployments this information is helpful to assess the time requirements
for the training phase. To simplify the calculation we assume that the opera-
tion area is rectangular and we omit obstacles that should not be covered by
reference points. These assumptions are valid because a rectangle can be drawn
around every shape an operation area might have and omitting obstacles does
not increase the actual number of reference points. Instead, the actual number of
reference points would be smaller and so our approach yields to a upper bound.
Let [ be the length of the rectangle approximating the operation area and w its
width. Furthermore, let d be the selected grid spacing of the equally spaced grid
of reference points. Then the maximum number of reference points m that cover
this area can be calculated as:

l w
mf(d+1)*(d +1)

For instance, if we approximate our operation area of 312 square meters by
a rectangle of 36 times 9 meters and select a 2.0 meter spaced grid the area can
be covered with at most 105 reference points. From Table 1 we know that in
practice the maximum number is 51. The difference here is caused by obstacles
and a non-rectangular operation area.

For the basic experiment we selected a grid spacing of 1.0 meter because
this is the size used by other researchers in the literature (e.g., [5] [8]). For the
starting point, we used our aforementioned algorithm to find the smoothest grid
resulting in a starting point moved 0.5 meters north compared to the point of
origin.
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4.5 Best Case Scenario

In this section, we squeeze the best out of the positioning system. For a few
application areas, it sounds quite feasible to deploy a few extra access points and
to spend a few more minutes for the collection of the training data, especially
if in return the accuracy and precision of the positioning system increases. To
exploit the potential of 802.11-based positioning systems, we selected all the
parameters that produced the best results in the previous sections: 110 samples
for the offline set, 110 samples for the online set, a grid spacing of 0.5 meters,
all 14 access points.

As expected, the average position error as well as the standard deviation
achieve the best results presented so far: 2.06 meters on the average with a stan-
dard deviation of 1.65 meters. Compared to best results presented in the previous
sections the average position error drops by about 27 centimeters, corresponding
to an improvement of 14 percent (see Sec. 4.4). The standard deviation improves
by about five percent, from 1.73 to 1.65 centimeter.

In Fig. 8 we present the cumulative distribution function of this experiment
because we are interested in the 95" percentile and in the long tail of the distri-
bution. As you see, we achieve position errors of less than 5 meters in 95 percent
of all cases. Furthermore, the maximum position error is less than 6.5 meters.
Compared to the results presented in the previous sections, we see that with
this experiment, the long tail of the position error distribution can be reduced
by more than 5.5 meters (see Sec. 4.1). This is an interesting and important
result which makes 802.11-based positioning systems more robust.

; s

Probability

0 1 2 3 4 5 6 7

Fig. 8. Cumulative distribution function for the best case scenario.

5 Discussion

After we have presented the key factors for position errors in the previous sec-
tions, we want to discuss the interesting and surprising implications that are
caused by this results. First, we are going to stress the importance of the num-
ber of access points for 802.11-based positioning systems. Second, we will discuss
the bottom line of the average position error we have observed.
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Our results in Sec. 4.1 already show the importance of the number of ac-
cess points. We want to emphasize their importance here again. Although the
other parameters of the parameter space are also important factors to influence
position errors, they all come with the drawback that decreasing position er-
rors by using these parameters increases the amount of time required to get the
system to work considerably. Instead, adding an extra access point to the oper-
ation area requires only a fixed amount of time for the installation. During the
training phase as well as during the position determination phase, an additional
access point does not influence the time requirements in any way. Increasing the
number of access points leads to a decrease of the average position error and
its standard deviation or in other words makes the position system more accu-
rate and robust. These two facts make extra access points highly appealing for
performance improvements of 802.11-based positioning systems.

In all of our experiments we have seen a “hidden” bottom line for the average
position error of 2.0 meters. Even if we select the most advantageous values for
the parameters of the positioning system, we are not able to under-run the
lower bound of 2.0 meters. This is consistent with the results published by other
researchers (e.g., [2] [8] [4]). From this, we draw the conclusion that an average
position error of 2.0 meters is the lower bound for 802.11-based positioning
systems.

To further improve position errors of 802.11-based positioning systems re-
searchers came up with the idea of sensor-fusion [14]. This means that additional
sensors such as Bluetooth or a digital compasses are used in combination with
802.11. First publications proof that the average position error can be reduced to
1.65 meters in case a digital compass is used [5]. However, this approach lessens
the advantage that every 802.11-enabled device can be used for positioning pur-
poses out of the box.

6 Conclusions

In this paper, we have presented a measurement study of key factors for posi-
tion errors for 802.11-based positioning systems. Our results show that for the
training phase 20 samples at each reference point are enough. For the position
determination phase at least three samples should be selected to achieve reason-
able position errors. If the positioning system is not used to track users, better
results are achievable with 15 samples. How the grid of reference points should
look like cannot be definitely said because there is a trade-off between posi-
tion errors and time. Therefore, we recommend a grid spacing between 1.0 and
2.5 meters depending on the time the operator is willing to spend to gather data
for the training phase. To find a suitable starting point for the reference grid,
we have presented an algorithm. The number of access points is a great means
to improve position errors for many reasons. Access points are cheaply available
nowadays and can be easily installed. Further, the number of access points does
not influence the time requirements of the training and position determination
phase.
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All our experiments as well as the results presented by other researchers show
that on average position errors of less than 2.0 meters is not achievable. Thus,
we draw the conclusion that there is a ”hidden” bottom line of 2.0 meters for
the average position error that cannot be under-run.
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