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ABSTRACT

The recognition of human postures and gestures is considered to be highly relevant semantic information in videos and
surveillance systems. We present a new three-step approach to classifying the posture or gesture of a person based on
segmentation, classification, and aggregation.
A background image is constructed from succeeding frames using motion compensation and shapes of people are

segmented by comparing the background image with each frame. We use a modified curvature scale space (CSS)
approach to classify a shape. But a major drawback to this approach is its poor representation of convex segments in
shapes: Convex objects cannot be represented at all since there are no inflection points. We have extended the CSS
approach to generate feature points for both the concave and convex segments of a shape. The key idea is to reflect each
contour pixel and map the original shape to a second one whose curvature is the reverse: Strong convex segments in
the original shape are mapped to concave segments in the second one and vice versa. For each shape a CSS image is
generated whose feature points characterize the shape of a person very well.
The last step aggregates the matching results. A transition matrix is defined that classifies possible transitions be-

tween adjacent frames, e.g. a person who is sitting on a chair in one frame cannot be walking in the next. A valid
transition requires at least several frames where the posture is classified as standing-up. We present promising results
and compare the classification rates of postures and gestures for the standard CSS and our new approach.

Keywords: shape analysis, posture and gesture recognition, curvature scale space

1. INTRODUCTION

One of the central topics in computer vision is the recognition of human postures and gestures. A major goal is to go
beyond traditional human-computer interaction (like mouse or keyboard) and find a more natural means of interaction
with computers. Not only natural communication but also the movement and action of a person are highly relevant.
Examples include surveillance systems that detect and track a person and recognize special actions (e.g., theft). Smart
interfaces or smart rooms1 recognize motion and gestures and can react to and communicate with a person. An example
is the KidsRoom,2, 3 a fully automated and interactive play space for children. The human-computer interaction is based
solely on computational perception.
Many approaches4 detect principal parts of a body5–7 such as fingers, hands, feet or the head based on color or edge

information. Additional parts of the body (e.g., knees) then are derived from the positions of the principal parts. Other
methods use three-dimensional models to identify the posture or gesture of a person.8–10 The images from several
cameras are aggregated to gain this 3D information.
We present a generic approach to identify postures and gestures of a person that analyzes the global shape of an

individual. A reliable segmentation is required: We assume that the camera is static or that at least half of the visible
area in a frame is background. Otherwise it is not possible to differentiate between foreground and background motion
nor can segmentation of the person be performed.
The rest of the paper is organized as follows: In the following section the relevant work in the area of object seg-

mentation in combination with the curvature scale space technique is presented. Section 3 gives an overview of the three
steps of our recognition process. The subsequent sections describe the details of this approach. The automatic segmen-
tation of people is presented in Section 4. Sections 5 and 6 describe the feature extraction and matching processes. The
aggregation of the classification results for individual frames is presented in Section 7. Finally, Section 8 displays the
evaluation results and concludes the paper.

This is a preliminary version of an article published in 
Proc. of IS&T/SPIE Electronic Imaging (EI), pp. 114 – 124, San José, CA, USA, January 2005 
by Stephan Kopf, Thomas Haenselmann, Wolfgang Effelsberg



description
Posture or gesture

Transition
matrix

Frames in
one shot

Camera
motion

Background
image

Segmentation

Tracking

CSS features

Mapped
CSS features

mapping
Contour

Matching

Aggregation of
object classes

shape of
object mask

Step 1: Segmentation Step 3: AggregationStep 2: Classification
CSS DB

Figure 1. Overview of the recognition process

2. RELATEDWORK

A first major step is the separation of the foreground from the background in videos. Many approaches have been
presented to separate and segment foreground objects in videos, including the promising optical flow techniques11–15
and statistical approaches.16 The general idea is to identify foreground and background (camera) motion. A camera
model that uses six or eight parameters is sufficient to describe most camera motions.17–19 To estimate the modell’s
parameters feature-based20 or gradient-based algorithms21 can be used.
Surveys on the recognition of objects in videos based on shape analysis can be found in22–24. One of the reliable and

fast shape classification techniques is the curvature scale space (CSS) technique,25–28 which was one of the features
selected to describe objects in the MPEG-7 standard.29 Many other approaches and combinations of shape descriptors
have been proposed in the literature.30

The occurrence of ambiguities with regard to concave segments of a shape constitutes a major drawback to the CSS
technique. Somemethods have been proposed to resolve these ambiguities.25, 28 Amore severe, and as yet unaddressed,
problem with the CSS approach, is the poor representation of convex segments of a shape. We present a new approach
based on the CSS technique with which even convex shapes can be classified.

3. OVERVIEW

The posture of a person is recognized in a process consisting of three major steps (see Figure 1): Once the person has
been segmented (step 1), their shape is classified in each frame according to shape features (step 2). Step 3 aggregates
the classification results and provides a reliable description of that person’s posture or gesture.
The general idea of object segmentation is to estimate the camera motion between consecutive frames in a shot.

Based on the camera motion a background image is constructed automatically. Foreground objects are removed from
the background image by means of temporal filtering. The differences between each frame and the background image
are evaluated and an object mask is calculated.
The classification step analyzes the shape of the segmented person. The curvature scale space (CSS) approach

analyzes the curvature in each shape pixel and calculates features for significant concave segments of the shape. We
present a new approach that we call contour mapping to make possible the analysis of convex regions of a shape. The
actual matching compares the feature vectors to those of known shapes that are stored in a database. This step uses the
features that characterize the concave and convex segments of a shape.



In the last step, the classification results are aggregated for each frame in a shot. False classifications of individual
frames can be removed. The general idea is to define valid transitions of shapes between adjacent frames since random
changes of gestures or postures are very unlikely.

4. SEGMENTATION

The segmentation is based on the analysis of the camera (background) motion and foreground motion. A background
image without any objects in the foreground is constructed and the segmentation is performed by comparing the frames
to the background image.
We use an eight-parameter camera model to describe the camera motion between two consecutive frames. The

position of each pixel (x, y) in a frame i is transformed to a new position (x′, y′) in frame i + 1:

x′ =
a11x + a12y + tx
pxx + pyy + 1

(1)

y′ =
a21x + a22y + ty
pxx + pyy + 1

. (2)

The parameters tx and ty describe the translation (pan or tilt) in a frame and aij specifies the additional linear part
of the image transformation (rotation, zoom). The parameters of the camera model are calculated by tracking significant
feature points, which we gather using the Harris corner detector.31 Correspondences of corners in consecutive frames
are identified. The location of four correspondences between two frames suffices to calculate the eight parameters of the
camera model. Since many corners are located and some correspondences describe the motion of foreground objects,
we use a robust regression method (least-trimmed squares regression32) to identify the correct camera parameters.
A background image is constructed based on the camera motion in adjacent frames. Following the transformation

with the camera model all frames are aligned and the position of the background in all matches. We apply a median
filter in each pixel position to remove foreground objects. The person is segmented by comparing each frame to the
background image. In a final step, the segmented region is validated. Its position, size, aspect ratio and direction of the
motion are tracked in the shot in order to eliminate noise and remove segmentation errors. Details of this approach are
published in33.

5. CURVATURE SCALE SPACE REPRESENTATION

We analyze the outer shape of the segmented region and derive curvature features for classification. The standard
curvature scale space (CSS) technique26, 28, 29 is based on the idea of curve evolution. The closed planar curve Γ(u)
represents the outer shape of the segmented object with the normalized arc length parameter u:

Γ(u) = {(x(u), y(u))|u ∈ [0, 1]}. (3)

The shape is iteratively deformed by a Gaussian kernel g(u, σ) of width σ. X(u, σ) and Y (u, σ) denote the position
of the components after convolution with g(u, σ). The deformation of the curve is presented by:

Γ(u, σ) = {(X(u, σ), Y (u, σ))|u ∈ [0, 1]}. (4)

The curvature κ of an evolved curve is defined as:

κ(u, σ) =
Xu(u, σ) · Yuu(u, σ) − Xuu(u, σ) · Yu(u, σ)

(Xu(u, σ)2 + Yu(u, σ)2)3/2
, (5)

and can be computed with the first and second derivatives ofX(u, σ) and Y (u, σ). A CSS image I(u, σ) provides a
multi-scale representation of the inflection points of Γ and is defined by:
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Figure 2. Segmented person and smoothed shapes with inflection points are depicted following 10, 60, 200 and 400 iterations,
respectively. The corresponding CSS image is visible on the right side. The positions of three major concave segments are marked in
the shapes and the CSS image.

I(u, σ) = {((u, σ)|κ(u, σ) = 0}. (6)

Significant peaks in the CSS images represent major concave segments of the shape. We use the position and size of
the peaks as the feature points in the CSS image to describe a shape. Figure 2 depicts the evolution of a shape and the
corresponding CSS image.
A major drawback of the standard CSS approach is the inadequate representation of convex segments of the shape.

A CSS image represents the position of the inflection points of a shape. Usually, two inflection points define a concave
segment of the shape; convex shapes without concave segments cannot be distinguished by this approach.
We use a two-step approach: First, we apply the standard CSS technique to get feature vectors that characterize

concave parts of the shape very well. The general idea is now to create a second shape that we call the mapped shape.
This shape provides additional features for the convex segments of the original shape. Strong convex segments of the
original shape become concave segments of the mapped shape.
To create a mapped shape, we enclose the shape by a circle of radius R and identify the point P of the circle closest

to each shape pixel. The shape pixel is mirrored on the tangent of the circle in P . A shape and its mapped shape are
depicted in Figure 3. Segments of the shape that have a strong convex curvature are mapped to concave segments. The
strength of the curvature of the mapped shape depends on the radius R of the circle and on the curvature of the original
shape. If a convex curvature is stronger than the curvature of the circle, the segment in the mapped shape will be concave.
The mapped shape can be calculated quickly. Each shape pixel at position u of the closed planar curve (x(u); y(u))

is mapped to a curve (x′(u); y′(u)). The center of the circle (Mx; My) of radius R is calculated as the average position
of shape pixels (Mx = 1/N

∑N
u=1 x(u), My = 1/N

∑N
u=1 y(u)).
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Figure 3. Original shape of a fist, enclosing circle and mapped shape

Dx(u),y(u) =
√

(Mx − x(u))2 + (My − y(u))2 (7)

x′(u) =
2 · R − Dx(u),y(u)

Dx(u),y(u)
· (x(u) − Mx) + Mx (8)

y′(u) =
2 · R − Dx(u),y(u)

Dx(u),y(u)
· (y(u) − My) + My (9)

Dx(u),y(u) specifies the distance between the center of the circle and the current shape pixel. If the position of a
shape pixel and the center of the circle coincide, they cannot be mapped. If this is the case, the shape pixel will be
interpolated from adjacent shape pixels of the mapped shape.
In principle, the mirroring of shapes is not limited to enclosing circles. However, using other shapes would cause

difficulties: Angular shapes like rectangles would create discontinuous shapes. Ellipses bear the disadvantage that the
point P (where the shape pixel is mirrored) is not always unique. E.g., in the case of ellipses that are parallel to the X-
and Y-axes, the mirroring is undefined for all points on these axes.
We apply the standard CSS approach to the mapped shape and gain additional feature points. To indicate the classi-

fication of convex segments in the original shape, we represent this new CSS image by means of negative values. Figure
4 depicts extended CSS images for two shapes of a hand. Positive values represent the original CSS images, negative
values those of the mapped shapes. Although the original CSS images of the hands in Figure 4 are quite similar, the
extended CSS approach allows them to be reliably distinguished.

6. CLASSIFICATION

The segmented shape is sampled using a fixed number of samples. The CSS image is calculated, and peaks are extracted.
It is sufficient to extract the significant maxima (above a certain noise level). The position on the shape and the value
(iteration or Gaussian kernel width) are stored for each peak, each of which characterizes a convex region.
The sampled shape pixels are transformed to the mapped shape, and a second CSS image is created. The mapped

feature vectors are stored as negative values. Up to ten feature vectors are stored for each CSS image (original and
mapped). To match an unknown shape, all CSS peaks are compared to those of the shapes that are stored in a database.28

The general idea behind the matching algorithm is to compare the peaks in the CSS images according to the height
and position of the arc. This is done by first determining the best position at which to compare the peaks. It might be
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Figure 4. Two extended CSS images of a hand. Positive values in the CSS image represent concave segments of a shape, negative
values characterize significant convex segments. A reliable distinction between the left and the right shape is not possible if only
positive CSS peaks are compared. Both CSS images are significantly different when positive and negative peaks are regarded. The
positions of the major concave and convex segments are numbered.

necessary to rotate one of the CSS images to best align them. Shifting the CSS image to the left or right corresponds
to rotation of the original shape in the image. Each shape is stored only once in the database, and the horizontal moves
compensate missing rotations.
For each peak in the CSS image of the unknown shape a matching peak is determined. If one is found, the Euclidean

distance between the two peaks (height, position) is calculated and added to the difference between both CSS images.
Otherwise, the height of the peak in the first, unknown, image is multiplied by a penalty factor and added to the total
difference. Negative CSS peaks cannot be matched to positive ones (the concave segments in the original and in the
mapped shape).

7. AGGREGATION

The matching technique described above calculates the best database match for each automatically segmented shape.
Since the database entries are labeled with an appropriate shape name, the shape in the video can be classified accord-
ingly. Each shape is aggregated to a class of similar shapes, e.g. to a class that describes the posture of a person. Typical
classifications for a person are standing, walking, sitting and standing up. Examples for gestures of a hand are stored in
the database as fist, side (open) or side (closed).
The shape class assigned to a segmented object mask can change over time due to object deformations or matching

errors. The probability of an object’s changing from one object class to another depends on the respective classes. It is
improbable that a person who is sitting in one frame will be walking in the following frames. Some transition frames
where the person is standing-up are expected in real video shots. For each change of class we assign additional matching
costs. Plausible transitions like sitting→ standing up or standing up→ walking will have very low additional matching
costs (transition costs).
Let dk(i) denote the CSS distance between an input object mask at frame i and an object class k from the database.

Furthermore, let wk,l denote the cost of transition from class k to l. Then, we seek the classification vector c, assigning
an object class to each input object mask for all N frames, which minimizes

min
c

N∑
i=1

dc(i)(i) + wc(i),c(i−1). (10)

This optimization problem can be solved by a search for the shortest path as depicted in Figure 5. With respect to
the figure, dk(i) corresponds to costs assigned to the nodes, while wk,l corresponds to costs at the edges. The optimal
path can be computed efficiently using a dynamic programming algorithm. The object behavior can be extracted easily
from the nodes along the minimum-cost path.



1

2

3

4

person
(walking)

person
(standing up)

person
(sitting)

hand
(closed)

w1,1
w1,2

d (5)4

d (5)3

d (5)2

d (5)1

path with minimal total costs
costs of transition between object classes
end knot with minimal costs

classes
shape

frame 4frame 1 frame 3frame 2 frame 5 last frame

input frames

Figure 5. Example of the transition matrix including the path with the minimum costs. The transition costs wk,l from the shape class
”person (walking)” to the class ”hand (closed)” are very high. dk(i) denotes the matching costs between the segmented object in
frame i and the best match in object class k.

8. RESULTS AND OUTLOOK

We have selected 400 automatically and manually segmented objects and built twelve object classes. In addition to the
classes that describe the posture or gesture of a person, images of four other object classes were added, e.g., the classes
car (frontal view) or car (side view). Objects from these additional classes do not occur in the selected video sequences.
Rather the classes were added to test the robustness of the recognition results.
We have analyzed five short video sequences illustrating different postures and gestures. Static and hand-held cam-

eras were used in these examples. Figure 6 presents sample images and classification results for two video sequences.
Due to the low noise level in these sequences and good segmentation results, the standard CSS approach combined
with the aggregation was sufficient to classify a large number of postures. Figure 7 depicts an example in which the
standard CSS technique fails. The extension with the mapped shapes and aggregation enables a correct classification.
Figure 8 depicts an example with a moving camera. The segmentation errors are significantly larger than in the previous
examples.
The recognition results for the five sequences are listed in Table 1. In general, the most reliable approach is the

extended CSS with aggregation. Most recognition results of the extended approaches are superior to those of the standard
CSS approaches. Sequence 4 is an exception: The recognition results of the standard CSS approach are slightly better.
This can be explained by the fact that concave regions are visible in each segmented object. The recognition results
cannot be improved by additional convex features due to many segmentation errors based on the poor quality of the
difference image. The aggregation step improves the results if more than fifty percent of the shapes are successfully
identified. In the case of sequence 1, the quality of the recognition using the standard CSS approach was slightly lower
with additional aggregation.
In this paper, we have presented a new algorithm to automatically classifying the posture or gesture of a person. We

implemented the curvature scale space approaches and provided a solution to overcoming one of the major deficiencies
of the standard approach: the classification of convex shapes. We use a dynamic programming algorithm to aggregate
the classification results in a shot.
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Figure 7. Automatically segmented and classified gestures in sequence 1: (a) standard CSS approach, (b) extended CSS approach
with aggregation of the results

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Average
(Total)

Number of frames 46 301 259 55 189 850
CSS 46 % 61 % 75 % 56 % 72 % 67 %
CSS with aggregation 43 % 70 % 86 % 76 % 87 % 78 %
Extended CSS 76 % 67 % 83 % 53 % 81 % 75 %
Extended CSS with aggregation 100 % 75 % 92 % 71 % 95 % 86 %

Table 1. Correctly classified posture in frames in five video segments
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Figure 8. Three selected frames of sequence 4 with camera motion (top), automatically generated background image (center) and
segmented person (bottom). The position of the first and last frame is highlighted in the background image.
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