
1

25
SEGMENTATION AND CLASSIFICATION OF

MOVING VIDEO OBJECTS

Dirk Farin, Thomas Haenselmann, Stephan Kopf,
Gerald Kühne, Wolfgang Effelsberg

Praktische Informatik IV
University of Mannheim

L15, 16, 68131 Mannheim, Germany
effelsberg@informatik.uni-mannheim.de

1. INTRODUCTION
Despite very optimistic predictions in the early days of Artificial Intelligence
research, a computer vision system that interprets image sequences acquired
from arbitrary real-world scenes still remains out of reach. Nevertheless,
there has been great progress in the field since then and a number of
applications emerged within different areas. Of particular interest for several
applications are capabilities for object segmentation and object recognition.
Algorithms from the former category support the segmentation of the
observed world into semantic entities, thus allow a transition from signal
processing towards an object-oriented view. Object recognition approaches
allow the classification of objects into categories and enable for conceptual
representations of still images or videos.

The goal of this chapter is the development of a classification system for
objects that appear in videos. This information can be used to index or
categorize videos and it thus supports object-based video retrieval. In order
to keep the subject manageable, the system is embedded into a set of
constraints: The segmentation module relies on motion information, thus it
can only detect moving objects. Furthermore, the classification module only
considers the two-dimensional shape of the segmented objects. Therefore,
just a coarse classification of the objects into generic classes (e.g., cars,
people) is possible.

The remainder of the chapter is organized as follows: First of all, in
summarizing our approach, Section 2 serves as a guideline through the
subsequent sections. In Section 3, camera models and the estimation of their
parameters are described. Next, we discuss our approach to object
segmentation in Section 4. Section 5 introduces the video object

This is a preliminary version of an article published in
In B. Furht and O. Marques (editors), Handbook of Video Databases, Vol. 8, pages 561 – 591. CRC Press, Boca Raton, FL, USA, September 2002
by Dirk Farin, Thomas Haenselmann, Stephan Kopf, Gerald Kühne and Wolfgang Effelsberg

Chapter 25 2

classification system and Section 6 concludes the chapter with experimental
results.

2. SYSTEM ARCHITECTURE
Our system for video object classification consists of two components,
namely a segmentation module and a classification module (cf. Figure 1).

Based on motion cues the camera motion within the scene is determined
(motion estimation) and a background image for the entire sequence is
constructed (background mosaic). During the construction process, parts
belonging to foreground objects are removed by temporal filtering. Then,
object segmentation is performed by evaluating differences between the
current frame and the reconstructed background mosaic (segmentation).

The object masks determined by the segmentation algorithm are fed forward
to the classification module. For each mask, an efficient shape-based
representation is calculated (contour description). Then, this description is
matched to pre-calculated object descriptions stored in a database
(matching). The final classification of the object is achieved by integrating the
matching results for a number of successive frames. This adds reliability to
the approach since unrecognizable single object views occurring in the video
are insignificant with respect to the whole sequence. Moreover, it allows an
automatic description of object behavior.

background mosaic

segmentation

motion estimation
mage sequence

Object Classification

Object Segmentation

classified video object

database

prototypes
with object

matching processcontour description

Figure 1: Architecture of the video object classification system.

Segmentation and Classification of Moving Video Objects 3

3. CAMERA MOTION COMPENSATION
If videos are recorded with a moving camera, not only the foreground objects
are moving, but also the background. The first step of our segmentation
algorithm determines the motion due to changes in the camera parameters.
This allows to stabilize the background such that only the foreground objects
are moving relative to the coordinate system of the reconstructed
background. It is usually assumed that the background motion is the
dominant motion in the sequence, i.e., its area of support is much larger
than the foreground objects.

In order to differentiate between foreground and background motion, one has
to introduce a regularization model for the motion field. This model should be
general enough to describe all types of motion that can occur for a single
object, but on the other hand, it should be sufficiently restrictive that two
motions that we consider “different” can not be described by the same model.
The motion model also allows to determine motion in areas in which the
texture content is not sufficient to estimate the correct motion.

3.1 CAMERA MOTION MODELS

We use a world model in which the image background is planar and non-
deformable. This assumption, which is valid for most practical sequences,
allows us to use a much simpler motion model as would be needed for the
general case of a full three-dimensional structure.

Using homogeneous coordinates, the projection of a 3D scene to an image
plane can be formulated in the most general case by

() ()TT zyxPwyx 1'' ⋅= , where P is a 43× matrix (see [3,6,7]). As
we are only interested in the transformation of one projected image to
another projected image at a different camera position (c.f. Fig. 2), we can
arbitrarily change the world coordinate system such that the background
plane is located at 0=z . In this case, the projection equation reduces to

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
=

��
�
�
�

�

�

��
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

1
1

0
'

'

343231

242221

141211

34333231

24232221

14131211

y

x

ppp

ppp

ppp
y

x

pppp

pppp

pppp

w

y

x

. (1)

The 33× matrix on the right denotes a plane-to-plane mapping

(homography). Let iH be the homography to project the background plane

onto the image plane of frame i. Then, we can determine the transformation
from image plane i to j as

�
�
�

�

�

�
�
�

�

�
== −

333231

232221

131211
1

hhh

hhh

hhh

HHH ijij . (2)

Chapter 25 4

i

j

x

y

z

background
plane

x

y

x

y
i

j

H

H

Figure 2: Projection of background plane in world coordinates to image
coordinate systems of images i and j .

Since homogeneous coordinates are scaling invariant, we can set

33/' hhh ijij = and get with a renaming of matrix elements

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�
=

1'''

'''

'''

2221

1211

333231

232221

131211
'

yx

y

x

ij

pp

taa

taa

hhh

hhh

hhh

H . (3)

Hence, the transformation between image frames can be written as

.
1

',
1

' 22211211

++
++

=
++
++

=
ypxp

tyaxa
y

ypxp

tyaxa
x

yx

y

yx

x (4)

This model is called the perspective camera motion model. In this
formulation, it is easy to see that the ija correspond to an affine

transformation, xt , yt are the translatorial components, and xp , yp are the

perspective parameters. A disadvantage of the perspective motion model,
that will become apparent in the next section, is that the model is non-
linear. If the viewing direction does not change much between successive
frames, the perspective parameters xp , yp can be neglected and can be set

to zero. This results in the affine camera motion model

���

�
���

�
+���

�
���

�
���

�
���

�
=���

�
���

�
y

x

t

t

y

x

aa

aa

y

x

2221

1211

'

'
. (5)

Since the affine model is linear, the parameters can be estimated easily. The
selection of the appropriate camera model depends on the application area.
While it is possible to use the most general model in all situations, it may be
advantageous to restrict to a simpler model. A simple motion model is not
only easier to implement, but the estimation also converges faster and is
more robust than a model with more parameters. In some applications, it
may even be possible to restrict the affine model further to the translatorial

Segmentation and Classification of Moving Video Objects 5

model. Here,)(ija equals the identity matrix and only the translatorial

components xt , yt remain:

() () () .'' T
yx

TT ttyxyx += (6)

(a) translation (b) scaling (c) rotation (d) shear (e) perspective

Figure 3: Different plane transformations. While transformations (a)-(d) are
affine, perspective deformations (e) can only be modeled by the perspective
motion model.

3.2 MODEL PARAMETER ESTIMATION

In parameter estimation, we search for the camera model parameters that
best describe the measured local motion. Algorithms for camera model
parameter estimation can be coarsely divided into two classes: feature-based
estimation [22] and direct (or gradient-based) estimation [8]. The idea of model
estimation based on feature correspondences is to identify a set of positions
in the image that can be tracked through the sequence. The camera model is
then calculated as the best fit model to these correspondences. In direct
matching, the best model parameters are defined as those resulting in the
difference frame with minimum energy. This approach is usually solved by a
gradient descent algorithm. Hence, it is important to have a good initial
estimate of the camera model to prevent getting trapped in a local minimum.
As the probability for running into a local minimum increases with large
displacements, a pyramid approach is often used. The image is scaled down
several levels and the estimation begins at the lowest resolution level. After
convergence, the estimation continues at the next higher resolution level
until the parameters for the original resolution are found.

Since direct methods provide a higher estimation accuracy than feature-
based approaches, but require a good initialization to assure convergence, we
are using a two-step process. First, feature-based estimation which can cope
with large displacements is used to obtain an initial estimate. Based on this
model, a direct method is used to increase the accuracy.

3.3 FEATURE-BASED ESTIMATION

Feature-based estimation is based on a set of features in the image that can
be tracked reliably through the sequence. If features can be well localized,
image motion can be estimated with high confidence. On the other hand, for
pixels inside a uniformly colored region, we can not determine the correct
object motion. Even for pixels that lie on object edges, only the motion
component perpendicular to the edge can be determined (see Figure 4a). To
be able to track a feature reliably, it is required that the neighborhood of the
feature shows a structure that is truly two-dimensional. This is the case at
corners of regions, or points where several regions overlap (see Figure 4b-d).

Chapter 25 6

3.3.1 Feature Point Selection

For the selection of feature points, we employ the Harris (or Plessey) corner
detector [5] which is described in the following. Let { }ipP = be the set of

pixels in an image with associated brightness function I(p). To analyze the
structure at pixel () Iyxp pp ∈= , a small neighborhood IpN ⊂)(around

p is considered. We denote the image gradient at p as

()Tyx pgpgpI)()()(=∇ . Let us examine how the distribution of gradients

has to look like for feature point candidates. Figure 5 depicts scatter-plots of
the gradient vector components for all pixels inside the neighborhood of
some selected image positions. We can see in Figure 5c that for
neighborhoods that only exhibit one-dimensional structure, the gradients are
mainly oriented into the same direction. Consequently, the variance is large
perpendicular to the edge and very small along the edge. This small variance
indicates that the feature cannot be well localized. Favorably, features
should expose a neighborhood where the gradient components are well
scattered over the plane and, thus, the variance in both directions is high (cf.
Figure 5d,e).

Approximating a bivariate Gaussian distribution, we determine the principal
axes of the distribution by using a principal component decomposition of the
correlation matrix

�
�
�

�

�

�
�
�

�

�
= ��

��

∈∈

∈∈

)()(

)()(

)()()()(

)()()()(

pNi
yy

pNi
yx

pNi
yx

pNi
xx

igigigig

igigigig

C . (7)

The length of the principal axes corresponds to the eigenvalues 21 λλ ≤ of C.

Based on these eigenvalues, we can introduce a classification of the pixel p.
We differentiate between the classes flat for low 21,λλ , edge for 21 λλ << , or

corner, textured for large 21,λλ . Since the computation of eigenvalues is
computationally expensive (note that the computation has to be performed
for every pixel in the image), Harris and Stephens proposed to set the
classification boundaries such that an explicit computation of the

?

(a) (b) (c) (d)

Figure 4: Feature points on edges (a) cannot be tracked reliably because a high
uncertainty about the position along the edge remains. Feature points at
corners (b), crossings (c), or points where several regions overlap (d) can be
tracked very reliably.

Segmentation and Classification of Moving Video Objects 7

eigenvalues is not required. Exploiting the fact that)(21 CTr=+ λλ and

)(21 CDet=λλ , they defined a corner response value as

22
2121)()()(CTrkCDetkr ⋅−=+−= λλλλ (8)

where k is usually set to 0.06. The class boundaries are chosen as shown in
Figure 6. After r(x,y) has been computed for each pixel, feature points are
obtained from the local maxima of r(x,y) where lowtCTr >=+)(21 λλ (i.e., the

pixel is not classified as a flat pixel).

To improve the localization of the feature points, Equation 7 is modified to a
weighted correlation matrix where the gradients are weighted with a
Gaussian kernel w(p) as

�
�
�

�

�

�
�
�

�

�
= ��

��

∈∈

∈∈

)()(

)()(

)()()()()()(

)()()()()()(

pNi
yy

pNi
yx

pNi
yx

pNi
xx

igigiwigigiw

igigiwigigiw

C . (9)

This increases the weight of central pixels and the feature point is moved to
the position of maximum gradient variance. Without this weighting, the best
position to place the feature point is not unique. The detector response is
equal as long as the corner is completely contained in the neighborhood
window. A sample result of automatic feature point detection is shown in
Figure 5b.

 (a) original image (b) detected feature points

-40

-30

-20

-10

gy

gx

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

gy

gx

20

30

40

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

gy

gx
-40 -30 -20 -10 0 10 20 30 40

(c) window 1 (d) window 2 (e) window 3

Figure 5: Scatter plots of gradient components for a selected set of
windows.

Chapter 25 8

3.3.2 Refinement to Sub-Pixel Accuracy

The corner detector described so far locates feature points only up to integer
position accuracy. If the true feature point is located near the middle
between pixels, jitter may occur. This can be reduced by estimating the sub-
pixel position of the feature point.

The refinement is computed independently for the x and y coordinate. In
the following, we concentrate on the x direction. The y direction is handled
similarly. For each feature point, we match a parabola

cxbxaxv +Δ⋅+Δ⋅=Δ 2)()(through the Harris response surface),(yxr ,
centered at the considered feature point. The fitted parabola is defined by the
values of r at the feature point position and its two neighbors. By setting

pxxx −=Δ , where px is the feature point position (cf. Figure 7), we get

)1(−v),1(pp yxr −= cba +−=

)0(v),(pp yxr= c= (10)

)1(v),1(pp yxr += cba ++=

After setting 0d/d =Δxv , this leads to

),(2),1(),1(

),1(),1(

2

1

pppppp

pppp

yxryxryxr

yxryxr
x

−−++
+−−

⋅=Δ . (11)

λ1

λ2

edge

ed
ge

flat

corner

r

Figure 6: Pixel classification based
on Harris corner detector response
function. The dashed lines are the
isolines of r .

x

px

Δ

px’

r(x,y)

v(x)Δ

pixel
grid

x

Figure 7: Sub-pel feature
point localization by fitting
a quadratic function
through the feature point at

Segmentation and Classification of Moving Video Objects 9

Since),(pp yxr is a local maximum, it is guaranteed that 1|| <Δx . The new

feature point position is set to the maximum of v , i.e., xxx pp Δ+=′ .

3.3.3 Determining Feature Correspondences

After appropriate feature points have been identified, we have to establish
correspondences between feature points in successive frames. There are two
main problems in establishing the correspondences. First, not every feature
point has a corresponding feature point in the other frame. Because of image
noise or object motion, new feature points may appear or disappear.
Fortunately, the Harris corner detector is very stable so that most feature
points in one frame will also appear in the next [19]. The second problem is
that the matching can be ambiguous if there are several feature points
surrounded by a comparable texture. This may happen, e.g., when there are
objects with a regular texture or several identical objects in the image.

Let 21, FF be the set of feature points of two successive images 21, II . Our
feature matching algorithm works as follows:

1. For each pair of features 21, FjFi ∈∈ at positions);(),;(jjii yxyx ,

calculate the matching error

�� <Δ≤−<Δ≤−
Δ+Δ+−Δ+Δ+=

88 2188, |),(),(|
y jjiixji yyxxIyyxxId .

If the Euclidean distance between the feature points exceeds a
threshold maxdt , which is set to about 1/3 of the image width, jid , is

set to infinity. The rationale for this threshold will be given shortly.

2. Sort all matching errors obtained in the last step in ascending order.

3. Discard all matches whose matching error exceeds a threshold maxet .

4. Iterate through all pairs of feature points with increasing matching
error. If neither of the two feature points has been assigned yet,
establish a correspondence between the two.

Consequently, the matching process is a greedy algorithm, where best fits
are assigned first. If there are single features without a counterpart, the
probability that they will be assigned erroneously is low since all features
that have correct correspondences have been assigned before and, thus, are
not available for assignment any more. Moreover, the matching error will be
high so that it will usually exceed maxdt .

There is one special case that justifies the introduction of maxet . Consider a

camera pan. Many feature points will disappear at one side of the image and
new feature points will appear at the opposite side. After all feature points
that appear in both frames are assigned, only those features at the image
border remain. Thus, if the matching error is low, correspondences will be
established between just to disappear and just appeared features across the
complete image, which is obviously not correct. As we know that there will
always be a large overlap between successive frames, we also know that the
maximum motion can not be faster than, say, 1/3 of the image width

Chapter 25 10

between frames. Hence, we can circumvent the problem by introducing the
maximum distance limit maxet .

3.3.4 Model Parameter Estimation by Least Squares Regression

Let ii yx ˆ,ˆ be the measured position of feature i , which had position ii yx , in

the last frame. The best parameter set θ should minimize the squared
Euclidean distance between the measured feature location and the position

according to the camera model 222)ˆ'()ˆ'(iiiii yyxxe −+−= . Hence, we

minimize the sum of errors

� −+−=
i

iiii yyxxE 22)ˆ'()ˆ'(. (12)

Using the affine motion model with ()yx taataa 22211211=θ , we

obtain the solution by setting the partial derivatives iE θ∂∂ / to zero, which

leads to the following linear equation system:

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�

�
�

���
���
���

���
���
���

i i

i ii

i ii

i i

i ii

i ii

y

x

ii ii i

i ii ii ii

i ii iii i

ii ii i

i ii ii ii

i ii iii i

y

yy

xy

x

yx

xx

t

a

a

t

a

a

yx

yyyx

xyxx

yx

yyyx

xyxx

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

1000

000

000

0001

000

000

22

21

12

11

2

2

2

2

 (13)

Clearly, this equation system can be solved efficiently by splitting it up into
two independent 33× systems.

While this direct approach works for the affine motion model, it is not
applicable to the perspective model because the perspective model is non-
linear. One solution to this problem is that instead of using Euclidean
distances

2
ie 22)ˆ()ˆ(iiii yyxx −′+−′=

2

2221

2

1211 ˆ
1

ˆ
1 �

�
�

�
�
�
�

�
−

++
+++�

�
�

�
�
�
�

�
−

++
++= i

iyix

xii
i

iyix

xii y
ypxp

tyaxa
x

ypxp

tyaxa
(14)

to use algebraic distance minimization, where we try to minimize the
residuals

2
ir

22)1(iiyix eypxp ⋅++=

())ˆ()ˆ()1(22
iiiiiyix yyxxypxp −′+−′⋅++=

Segmentation and Classification of Moving Video Objects 11

2
1211)ˆˆˆ(iiiyiixxii xxypxxptyaxa −−−++= (15)

2
2221)ˆˆˆ(iiiyiixyii yyypyxptyaxa −−−+++

Note that because of the multiplication with 2)1(++ iyix ypxp , minimization

of 2
ir is biased, i.e., feature points with larger ii yx , have a greater influence

on the estimation. This undesirable effect can be slightly reduced by shifting
the origin of the coordinate system into the center of the image.

The sum of residuals 2
ir can be minimized by a least squares (LS) solution of

the overdetermined equation system

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

=

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

−−
−−

−−
−−
−−
−−

n

n

y

x

y

x

nnnnnn

nnnnnn

y

x

y

x

y

x

p

p

t

a

a

t

a

a

yyyxyx

xyxxyx

yyyxyx

xyxxyx

yyyxyx

xyxxyx

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆˆ1000

ˆˆ0001

ˆˆ1000

ˆˆ0001

ˆˆ1000

ˆˆ0001

2

2

1

1

22

21

12

11

222222

222222

111111

111111

���������

. (16)

A number of efficient numerical algorithms (e.g., based on singular value
decomposition) can be found for this standard problem in [15].

3.3.5 Robust Estimation

The main drawback of the LS method as described above is that outliers, i.e.,
observations that deviate strongly from the expected model, can totally offset
the estimation result. Figure 8 illustrates this problem. For this purpose, we
calculated motion estimates from two frames of a real-world sequence
recorded by a panning camera. The motion vectors due to the pan are clearly
visible in the background. In addition, the walking person in the foreground
causes motion estimates that deviate from those induced by camera motion.
Figure 8b displays the global motion field estimated by the LS method.
Obviously, the mixture of background and object motion did not lead to
satisfactory results. Instead, the camera parameters were optimized to
approximate both, background and object motion.

In order to estimate camera parameters reliably from a mixture of
background and object motion, one has to distinguish between observations
belonging to the global motion model (inliers) and those resulting from object
motion (outliers). Figure 8c displays the same motion estimates as before.
This time, however, only a subset of vectors (drawn in black) is used for the
LS estimation. The obtained camera motion model depicted in Figure 8d is
estimated exclusively from inliers and, thus, clearly approximates the
panning operation.

Chapter 25 12

To eliminate outliers from the estimation process, one can apply robust
regression methods. Widely used robust regression methods comprise
random sample concensus (RANSAC) [4], least median of squares (LMedS),
and least-trimmed squares (LTS) regression [17]. Those methods are able to
calculate the parameters of our regression problem even when a large
fraction of the data consists of outliers.

The basic steps are similar for all of those methods. First of all, a random
subset of the data set is drawn and the model parameters are calculated
from this subset. The subset size p equals the number of parameters to be
estimated. For instance, calculating the 8 parameters of the perspective
model requires 4 feature correspondences, each introducing two constraints.
A randomly drawn subset containing outliers results in a poor parameter
estimation. As a remedy, N subsets are drawn and the parameters are
calculated for each of them. By choosing N sufficiently high, one can assure
up to a certain probability that at least one “good” subset, i.e., a sample
without outliers, was drawn. The probability for drawing at least one subset

without outliers is given by NpNpP))1(1(1:),,(εε −−−= where ε denotes
the fraction of outliers. Conversely, the required number of samples to
ensure a high confidence can be determined from this equation.

 (a) (b)

 (c) (d)

Figure 8: Estimation of camera parameters. (a) motion estimates, (b)
estimation by least squares, (c) motion estimates (white vectors are
excluded from the estimation), (d) estimation by least-trimmed squares.
regression.

Segmentation and Classification of Moving Video Objects 13

For each parameter set calculated from the subsets, the model error is
measured. Finally, the model which fits the given observation best is
retained. The main difference between the three methods RANSAC, LMedS,
and LTS is the measure for the model error. We have chosen to use the LTS
estimator because it does not require a selection threshold as RANSAC and it
is computationally more efficient than LmedS [18]. The LTS estimator can be
written as

�
=

h

i
nir

1
:

2

ˆ
)(min

θ
 (17)

where n is the input data size and nnn rr :
2

:1
2)()(≤≤� denote the squared

residuals given in ascending order. Similar to the LS method, the sum of
squared residuals is minimized. However, only the h smallest squared
residuals are taken into account. Setting h approximately to 2/n eliminates
half of the cases from the summation, thus, the method can cope with about
50% outliers.

Since the computation of the LTS regression coefficients is not
straightforward, the basic steps are summarized in the following. For a
detailed treatment and a fast implementation called FAST-LTS, we refer to
[17,18].

To evaluate Equation 17, an initial estimate of the regression parameters is
required. For this purpose, a subset 0S of size p is drawn randomly from

the data set. Solving a linear system created by 0S yields an initial estimate

of the parameters denoted by 0̂θ . Using 0̂θ we can calculate the residuals

ir0 , ni ,,1�= for all n cases in the data set.

The estimation accuracy is increased by applying several compaction steps.
Sorting ir0 by absolute value yields a subset 0H containing the h cases

with the least absolute residuals. Furthermore, a first quality of fit measure

can be calculated from this subset as �∈
=

0
:

2
00)(:

Hi nirQ . Then, based on

0H , a least squares fit is calculated yielding a new parameter estimate 1̂θ .

Again, the residuals ir1 are calculated and sorted by absolute value in

ascending order. This yields a subset 1H which contains the h cases that

possess the least absolute residuals with respect to the parameter set 1̂θ .

The quality of fit for 1H is given by �∈
=

1
:

2
11)(:

Hi nirQ . Due to the properties

of LS regression, it can be assured that 01 QQ ≤ . Thus, by iterating the above

procedure until 1−= kk QQ , the optimal parameter set can be determined for a

given initial subset.

Chapter 25 14

3.4 DIRECT METHODS FOR MOTION ESTIMATION

Although motion estimation based on feature correspondences is robust and
can handle large motions, it is not accurate enough to achieve sub-pixel
registration. Particularly in the process of building the background mosaic,
small errors quickly sum up and result in clear misalignments. Given a good
initial motion estimate from the feature matching approach, a very accurate
registration can be calculated using direct methods. These techniques
minimize the motion compensated image difference given as

��
==

−′′′==
),(),(

)),(),((min)(minmin
yxiyxi

i yxIyxIeE γγ
θθθθ

. (18)

y)I(x, denotes the image brightness at position y)(x, and)y',(x'I' denotes
the brightness at the corresponding pixel (according to the selected motion

model) in the other image. For the moment, we assume that 2)(ee =γ , i.e.,
we use the sum of squared differences as difference measure. Later, we will
replace this by a robust M-estimator.

Minimization of E with respect to the motion model parameter vector θ is a
difficult problem and can only be tackled with gradient descent techniques.
We are using a Levenberg-Marquardt [9,11,15] minimizer because of its
stability and speed of convergence. The algorithm is a combination of a pure
gradient descent and a multi-dimensional Newton algorithm.

3.4.1 Levenberg-Marquardt-Minimization

Starting with an estimation)(iθ , the gradient descent process determines

the next estimation)1(+iθ by taking a small step down the gradient

)(
)()1(

iEii

θαθθ ∇⋅−=+ , (19)

where α is a small constant, determining the step size. One problem of pure
gradient descent is the choice of a good α since small values result in a slow
convergence rate, while large values may lead far away from the minimum.

The second method is the Newton algorithm. This algorithm assumes that if
)(iθ is near a minimum, the function to be minimized can often be

approximated by a quadratic form Q as

T
iii EEEQE θθθ θθθθθ ⋅∇⋅+∇⋅+=≈)()()(

2

2

1
, (20)

where E2∇ denotes the Hessian matrix of E .

If the Hessian matrix is positive definite,

0iffminarg (min)
(min) =∇= θθθ

θ QQ . (21)

Hence, because of

)()()1(2
)()()1(

ii
iii EEQ θθθθθ −⋅∇+∇=∇ +

+ (22)

Segmentation and Classification of Moving Video Objects 15

we can directly jump to the minimum of Q by setting

)()(
12)()1(

ii EEii

θθθθ ∇⋅∇−= −+ . (23)

Note the similar structure of this equation compared to Equation 19. Instead

of taking the inverse of the Hessian, the step)()1()(iii θθδθ −= + can also be
computed by solving the linear equation system

EE i −∇=⋅∇)(2 δθ . (24)

The Levenberg-Marquardt algorithm solves two problems at once. First, the
factor α in Equation 19 is chosen automatically, and second, the algorithm
combines steepest descent and Newton minimization into a unified
framework.

If we are comparing the units of)(iδθ with those in the Hessian, we can see
that only the diagonal entries of the Hessian provides some information
about scale. So, we set the step size (independently for each component kθ)

as

kk
k E)(

1
2∇

=
λ

α . (25)

λ is a new scaling factor which is controlled by the algorithm. To combine
steepest descent with the Newton algorithm, [9,11] propose to define a new
matrix D with

jkd
jkE)(2∇= kj ≠for

kkd)1()(2 λ+⋅∇= kkE diagonal)on the(elements

Replacing the Hessian of Equation 24 with D , we get

Ei −∇=⋅)(D δθ . (26)

Note that for 0=λ Equation 26 reduces to Equation 24 (i.e., the Newton
algorithm), while for large λ the matrix D becomes diagonal dominant and
the algorithm thus behaves like a steepest descent algorithm. The Levenberg-
Marquardt minimization algorithm uses λ to control the minimization
process and works as follows:

1. Choose an initial λ (e.g., 001.0=λ).

2. Solve Equation 26 to get the parameter update vector)(iδθ .

3. If)()()(iii EE θδθθ ≥
+

, the update does not improve the solution. Hence,

we increase λ by a factor of 10 (to reduce the step size) and go back
to Step 2.

4. If)()()(iii EE θδθθ <
+

, the update improves the solution. Hence, we set

)()()1(iii δθθθ +=+ and decrease λ by a factor of 10.

Chapter 25 16

5. When λ exceeds a high threshold, even the last small steps did not
improve the solution and we stop.

Adapting this technique to our motion estimation problem, we must
determine the Hessian matrix and gradient vector for a given parameter
estimate θ . In the following, we assume the perspective motion model from
Equation 4. The gradient vector can be determined easily from

1θ∂
∂ ie

11a

ei

∂
∂=

i

i

Z

x

x

I

'
'

∂
∂=

2θ∂
∂ ie

12a

ei

∂
∂=

i

i

Z

y

x

I

'
'

∂
∂=

3θ∂
∂ ie

x

i

t

e

∂
∂= 1

'
' −

∂
∂= iZ
x

I (27)

 � �

7θ∂
∂ ie

x

i

p

e

∂
∂= ���

�
���

�
∂
∂+

∂
∂−=

'

'
'

'

'
'

y

I
y

x

I
x

Z

y
ii

i

i

 � �

with the shortcut 1++= iyixi ypxpZ . Hence, with 2)(ee =γ the gradient

vector is simply

� ���

�
���

�
∂
∂

∂
∂

⋅⋅=∇
i

ii
i

ee
eE

81

2
θθ

� . (28)

We simplify the computation of the Hessian by ignoring the second order
derivative terms:

�
�
�

�
�
�
�

�
∂
∂⋅

∂
∂⋅≈�

�
�

�
�
�
�

�
∂∂

∂+
∂
∂⋅

∂
∂⋅=

∂∂
∂

k

i

j

i

kj

i
i

k

i

j

i

kj

i eee
e

eee

θθθθθθθθ
22

222

. (29)

Hence, we get

� ∂
∂⋅

∂
∂⋅=∇

i k

i

j

i
jk

ee
E

θθ
2)(2 . (30)

3.4.2 Applying an M-estimator

The algorithm described above assumes that the whole image moves
according to the estimated motion model. However, in our application, this is
not the case since foreground objects generally move differently. This
introduces large matching errors in areas of the foreground objects. The
consequence is that this mismatch distorts the estimation because the
algorithm also tries to minimize the matching error in the foreground region.
As the true object position is not known yet, it is not possible to exclude the
foreground regions from the estimation process. This problem can be

Segmentation and Classification of Moving Video Objects 17

alleviated by using a limited error function for)(xγ instead of the squared
error. For simplicity, we use

�
�
� <

=
else.

||for
)(

2

2

t

tee
eγ (31)

Introducing this error function into Equation 18 and computing the gradient
and Hessian is particularly simple as

��

�
�
�

<
∂
∂

=
∂

∂

.else0

if)(
2

t||e
e

e i
i

i

i

i θθ
γ

 (32)

Figure 9 shows two difference frames, the first using squared error as
matching function and the second using the robust distance function. It can
be seen that the registration error in the background region is smaller for the
robust distance function.

4. DETERMINING OBJECT MASKS
The principle of our segmentation algorithm is to compute the difference of
the current frame to a scene background image which does not contain any
foreground objects. The background image is automatically constructed from
the sequence such that the background adapts itself to changes or varying
illumination. Even if the background is never visible without any foreground
objects, the algorithm is capable to artificially recreate it.

(a) (b)

Figure 9: Difference frame after Levenberg-Marquardt minimization. (a)
shows residuals using squared differences as error function, (b) shows
residuals with saturated squared differences. It is visible that the robust
estimation achieves a better compensation. Especially note the text in the
right part of the image.

Chapter 25 18

Since the difference between input image and background contains much
error due to camera noise or small parts of the object having the same color
as the background, a regularization of the object shape is applied to the
difference frame.

4.1 BACKGROUND RECONSTRUCTION

The motion estimation step provides the motion model 1, +jjθ between

consecutive frames j and 1j + . By considering the transitive closure as the

concatenation of motion transformations, we can define all kj ,θ between

arbitrary frames j , k . If we fix the first frame as the reference coordinate

system for the background reconstruction, we can add frame j to the

background by applying the transformation j,1θ . To prevent the drift from

slight errors in the motion estimation step, the direct estimation step is not
applied to successive frames but to the input frame with respect to the
current background mosaic. Figure 10 shows how input frames are
assembled into a combined mosaic.

In general, the input video will contain foreground objects in most of the
frames. However, it is important that the reconstructed background does not
contain these objects. As it is not a-priori clear which parts are foreground
and which are background, we define everything as background that is
stable for at least b frames. The reconstruction algorithm stores the last b2
background mosaics obtained so far. The reconstructed background image is
then determined by applying a temporal median filter [12,21] over these
pictures (cf. Figure 11). Clearly, if at least b pictures have nearly the same
color at a pixel, this values will be set in the background reconstruction.

Figure 10: Reconstruction of background based on compensation of
camera motion between video frames. The original video frames are
indicated with borders.

Segmentation and Classification of Moving Video Objects 19

This approach works well if the objects are moving in the scene. If they stay
too long at the same position, they will eventually become background. A
sample reconstructed background from the “stefan” sequence can be seen in
Figure 20.

4.2 CHANGE DETECTION MASKS

The principle of our segmentation algorithm is to calculate the change
detection mask (CDM) between the background image and the input frames.
In the area where the foreground object is located, the difference between
background and input frame will be high. Note that the approach of taking
the difference to a reconstructed background has several advantages over
taking differences between successive frames:

1. The segmentation boundaries are more exact. If differences are
computed between successive frames, not only the new position of an
object will have large differences, but also the uncovered background
areas. This results in annoying artifacts because fast moving objects
are visible twice.

2. Objects that do not move for some time or that are only moving
slowly can not be segmented. Moreover, a slowly moving region with
almost uniform color would only show differences at the edges in
successive frames.

3. The reconstructed background can be used for object-based video
coding algorithms like MPEG-4 where the background can be
transmitted independently (as a so called “background-sprite”), which
reduces the required bit-rate as only the foreground objects have to
be transmitted.

ti
m

e

reconstructed background

median filtering

Figure 11: Aligned input frames are stacked and a pixel-wise median filter
is applied in the temporal direction to remove foreground objects.

 (a) frame 1 (b) frame 2 (c) difference

Figure 12: Computing the difference between successive frames results in
unwanted artifacts. The first two pictures show two input frames with
foreground objects. The right picture show the difference. Two kinds of
artifacts can be observed. First, the circle appears twice since the
algorithm cannot distinguish between appearing and disappearing.
Second, part of the inner area of the polygon is not filled because the pixels
in this area do not change their brightness.

Chapter 25 20

4.3 IMPROVED CHANGE DETECTION BASED ON THE SSD-3 MEASURE

With standard change detection based on squared or absolute differences, a
typical artifact can be observed. If the images contain sharp edges or fine
texture, these structures usually can not be cancelled completely because of
improper filtering and aliasing in the image acquisition process. Hence, fine
texture and sharp edges are often accidentally detected as moving object.

One technique to reduce this effect is to use the sum of spatial distances
(SSD-3) measure [2] to compute the difference frame. The principle of this
measure is to calculate the distance that a pixel has to be moved to reach a
pixel of similar brightness in the reference frame. In the one dimensional
case, it is defined as

),,min(1013 ddddSSD −− = (33)

with

() � �()
� �() � �() � �()()ixx

ixIixI

ixIxI
di +−−

+−++
+−= ''

''1''
''

. (34)

For the two-dimensional case, this measure is computed independently for
the horizontal and vertical direction and the minimum is taken. For an in-
depth explanation of this measure, see [2]. The difference frames obtained
with this measure compared to standard squared error is depicted in Fig. 13.

 (a) squared error (b) SSD-3

Figure 13: Difference frames using squared error and SSD-3. Note that
SSD-3 shows considerably less errors at edges caused by aliasing in the
sub-sampling process.

Segmentation and Classification of Moving Video Objects 21

4.4 SHAPE REGULARIZATION USING MARKOV RANDOM FIELDS

If the generation of a binary object mask from the difference frame is done
pixel by pixel with a fixed threshold, we have to face a lot of wrongly
classified pixels (cf. Figure 15a). Since most real objects have smooth
boundaries, we improve the segmentation by a shape regularization, which is
done using a Markov random field (MRF) model.

The formal definition of our segmentation problem is that we want to assign
a label out of the label set L={ background, foreground } to each pixel
position p . For each pixel position there is a random variable pF with

values Lf p ∈ . The probability that pixel p is assigned label pf is denoted

as)(pp fFP = . A random field is Markovian if the probability of a label

assignment for a pixel is only dependent on the neighborhood of this pixel:

)|()|()(}{ pNpppIpp FfFPFfFP === − , (35)

where }{ pIF − denotes the label configuration of the whole image except pixel

p and)(pNF the configuration in a neighborhood of pixel p . We define the

neighborhood of p as the 8-neighborhood, while differentiating between
straight and diagonal neighbors (see Figure 14).

Since the probabilities)|()(pNpp FfFP = are usually hard to define, Markov

random fields are often modelled as Gibbs random fields (GRF). It can be
shown that both descriptions are equivalent [10]. A GRF is defined through
the total label configuration probability)(fP as

)(1
1)(

fU
TeZfP

−− ⋅= (36)

where Z is a normalization constant to ensure that 1)(=� fPf . In the

following, we will always set the temperature parameter 1=T .)(fU is the

energy function, which is defined as

�
∈

=
Cc

c fVfU)()(, (37)

1

1

1 1

2 2

22

p

 (a) neighborhood (b) straight cliques (c) diagonal cliques

Figure 14: Definition of pixel neighborhood. Picture (a) shows the two
classes of pixel neighbors; straight (1) and diagonal (2). These two classes
are used to define the second order cliques. Straight cliques (b) and
diagonal cliques (c).

Chapter 25 22

in which the sum is over all cliques in the image and)(fVc is a clique

potential. Higher clique potentials result in lower probabilities for this clique
configuration. Cliques are subsets of related pixel positions in the image. In
our application, we are using an Auto-Logistic model, which only uses
cliques of single order (the pixels themselves) and of second order (cf. Figure
14). Thus, the energy function can be written as

� ��
∈

+=
p pNp

pp
p

p ffVfVfU
)('

',21)()()(. (38)

First order clique potentials)(1 pV are set according to the difference frame
information, i.e., how probable a pixel p belongs to foreground objects given

its difference frame value)(pd .

��

�
�
�

=−⋅
=⋅

=
−

−

.backgroundfor)0.1(
and,foregroundfor)(2

2

)(

)(

1
p

pd

p
pd

p
fe

fe
fV

β
β

 (39)

The second order clique potentials are set such that smooth regions are
preferred. I.e., cliques which contain different labels are assigned more
energy. More specifically, we use

�
�
�

≠
=−

=
'

'
'2 if

if
),(

pp

pp

pp ff

ff
ffV

μ
μ

. (40)

The parameter μ is set differently for the two types of cliques with lower
values for diagonal cliques as the corresponding pixels are farther away. The
label configuration that maximizes the total field probability (Eq. 36) is
obtained through an iterative Gibbs sampling algorithm [10]. Figure 15b
shows the segmentation mask obtained with our MRF model compared to a
pixel based classification. Applying MRF-based classification to each
difference frame yields binary object masks for the entire video.

 (a) per-pixel classification (b) MRF-based classification

Figure 15: Segmentation results for per-pixel decision between foreground
and background object and MRF based segmentation

Segmentation and Classification of Moving Video Objects 23

5. VIDEO OBJECT CLASSIFICATION
The automatic segmentation procedure as described above provides object
masks for each frame of the video. Based on these masks, further high-level
processing steps are possible. To enable semantic scene analysis, it is
required to assign object classes (e.g., persons, animals, cars) to the different
masks. Furthermore, object behavior (e.g., a person is sitting, stands up,
walks away) can be described by observing the object over time.

In our approach, object classification is based on comparing silhouettes of
automatically segmented objects to prototypical objects stored in a database.
Each real-world object is represented by a collection of two-dimensional
projections (or object views). The silhouette of each projection is analyzed by
the curvature scale space (CSS) technique. This technique provides a
compact representation that is well suited for indexing and retrieval.

Object behavior is derived by observing the transitions between object
classes over time and selecting the most probable transition sequence. Since
frequent changes of the object class are unlikely, occasional false
classifications resulting from errors which occurred in previous processing
steps are removed.

5.1 REPRESENTING SILHOUETTES USING CSS

The curvature scale space technique [1,13,14] is based on the idea of curve
evolution, i.e., basically the deformation of a curve over time. A CSS image
provides a multi-scale representation of the curvature zero crossings of a
closed planar contour.

Consider a closed planar curve)(uΓ representing an object view,

(){ },]1,0[)(),()(∈=Γ uuyuxu (41)

with the normalized arc length parameter u . The curve is smoothed by a
one-dimensional Gaussian kernel),(σug of width σ . The deformation of the
closed planar curve is represented by

(){ },]1,0[),(),,(),(∈=Γ uuYuXu σσσ (41)

where),(σuX and),(σuY denote the components)(ux and)(uy after

convolution with),(σug . Varying σ is equivalent to choosing a fixed 'σ
and applying the convolution iteratively.

The curvature),(σκ u of an evolved curve can be computed using the

derivatives),(σuX u ,),(σuX uu ,),(σuYu , and),(σuYuu as

2/322)),(),((
),(),(),(),(),(

σσ
σσσσσκ

uYuX

uYuXuYuX
u

uu

uuuuuu

+
⋅−⋅= . (42)

A CSS image),(σuI is defined by

{ }0),(|),(),(== σκσσ uuuI . (43)

Chapter 25 24

It contains the zero crossings of the curvature with respect to their position
on the contour and the width of the Gaussian kernel (or the number of
iterations, see Figure 16). During the deformation process, zero crossings
vanish as transitions between contour segments of different curvature are
smoothed out. Consequently, after a certain number of iterations, inflection
points disappear and the shape of the closed curve becomes convex. Note
that due to the dependence on curvature zero crossings, convex object views
cannot be distinguished by the CSS technique.

Significant contour properties that stay intact for a large number of
iterations result in high peaks in the CSS image. Segments with rapidly
changing curvatures caused by noise produce only small local maxima. In
many cases, the peaks in the CSS image provide a robust and compact
representation of an object view's contour. Note that a rotation of an object
view on the image plane can be accomplished by shifting the CSS image left
or right in a horizontal direction. Furthermore, a mirrored object view can be
represented by mirroring the CSS image.

Each peak in the CSS image is represented by three values, the position and
height of the peak and the width at the bottom of the arc-shaped contour.
The width specifies the normalized arc length distance of the two curvature
zero crossings enframing the contour segment represented by the peak in the
CSS image [16].

It is sufficient to extract the significant maxima (above a certain noise level)
from the CSS image. For instance, in the example depicted in Figure 16, only
five data triples remain and have to be stored after a small number of
iterations. The database described in the following section stores up to 10
significant data triples for each silhouette.

arc length

iterations

Figure 16: Construction of the CSS image. Left: Object view (a) and
iteratively smoothed contour (b)-(d). Right: Resulting CSS image.

 (a) (b)

 (c) (d)

Segmentation and Classification of Moving Video Objects 25

5.2 BUILDING THE DATABASE

The orientation of an object and the position of the camera have great impact
on the silhouette of the object. Therefore, to enable reliable recognition,
different views of an object have to be stored in the database.

Rigid objects can be represented by a small number of different views, e.g.,
for a car, the most relevant views are frontal views, side views, and views
where frontal and side parts of the car are visible.

For non-rigid objects, more views have to be stored in the database. For
instance, the contour of a walking person in a video changes significantly
from frame to frame.

Similar views of one type of object are aggregated to one object class. Our
database stores 275 silhouettes collected from a clip art library and from
real-world videos. The largest number of images show people (124 images),
animals (67 images), and cars (48 images). Based on behavior, the object
class people is subdivided into the following object classes: standing, sitting,
standing up, sitting down, walking, and turning around.

5.3 OBJECT MATCHING

Each automatically segmented object view is compared to all object views in
the database. In a first step, the aspect ratio, defined as quotient of object
width and height, is calculated. For two objects views with significantly
different aspect ratios, no matching is carried out. If both aspect ratios are
similar, the peaks in the CSS images of the two object views are compared.
The basic steps of the matching procedure are summarized in the following
[16]:

• First, both CSS representations have to be aligned. For this purpose
it might be necessary to rotate or mirror one of them. As mentioned
above, shifting the CSS image corresponds to a rotation of the
original object view. To align both representations, one of the CSS
images is shifted so that the highest peak in both CSS images is at
the same position.

• A matching peak is determined for each peak in a given CSS
representation. Two peaks match if their height, position and width
are within a certain range.

• If a matching peak is found, the Euclidean distance of the peaks in
the CSS image is calculated and added to a distance measure. If no
matching peak can be determined, the height of the peak is
multiplied by a penalty factor and added to the total difference.

Chapter 25 26

5.4 CLASSIFYING OBJECT BEHAVIOR

The matching technique described above calculates the best database match
for each automatically segmented object view. Since the database entries are
labeled with an appropriate class name, the video object can be classified
accordingly. The object class assigned to a segmented object mask can
change over time because of object deformations or matching errors. Since
the probability of changing from one object class to another depends on the
respective classes, we assign additionally matching costs for each class
change.

Let)(idk denote the CSS distance between an input object mask at frame i

and object class k from the database. Furthermore, let lkw , denote the

transition cost from class k to l (cf. Figure 17). Then, we seek the
classification vector c, assigning an object class to each input object mask,
which minimizes

1,)(min
−

+� iii cc
i

c
c

wid . (44)

This optimization problem can be solved by a shortest path search as
depicted in Figure 18. With respect to the figure,)(idk corresponds to costs

assigned to the nodes and lkw , corresponds to costs at the edges. The

optimal path can be computed efficiently using a dynamic programming
algorithm. The object behavior can be extracted easily from the nodes along
the minimum cost path.

Figure 17: Weights for transitions between object classes. Thicker arrows
represent more probable transitions.

Segmentation and Classification of Moving Video Objects 27

6. SYSTEM IMPLEMENTATION AND RESULTS
As outlined above, our object classification system consists of a motion-
based segmentation module and a shape-based classification module. We
start by discussing experimental results achieved by our segmentation
module. For this purpose, the segmentation algorithm was applied to two
real-world sequences, namely the “stefan” sequence used throughout this
chapter and a “road” sequence recorded by a handheld camera. Figures 19
and 21 depict some of the results. In Figure 20, the reconstructed
background of the “stefan” sequence is displayed. We observe that the
segmentation module separates the moving objects from the background
very well. In the case of the “stefan” sequence, some moving parts in the
audience are detected. In the “road” sequence the cars (and a pedestrian) are
extracted very precisely.

In order to classify the objects resulting from the segmentation process, the
classification algorithms are applied to their shapes. Figure 22 displays some
segmentation masks obtained by our automatic segmentation and the
respective best match calculated from the shape database. In three cases the
classification is successful and yields a reasonable match. In addition, we
observe one mismatch which is due to a segmentation error and the fact that
the database did not contain an appropriate representation of the running
tennis player.

Finally, let us consider the extraction of object behavior. In Figure 23, the
left image displays a training sequence used to define object prototypes for a
specific object behavior in the database. The right image depicts a test
sequence with the automatically assigned class labels. The different stages of
the object behavior were determined from the shortest path calculated from
the CSS matching results and the object frames were selected from the
middle between class transitions.

 person
(stand up)

 person
(stitting)

 car

 person
(walking)

path with minimal total cost

transition costs between object classes

ob
je

ct
 c

la
ss

es

end knot with
minimal total costs

frame 1 frame 2 frame 3 frame 4 frame 5 last frame

input frames

w
1,2

w
1,1

1

2

3

4
d (5)
4

d (5)
3

d (5)
2

d (5)
1

Figure 18: Extraction of object behavior.

Chapter 25 28

Figure 19: Segmentation results of “stefan” test sequence (frames 40, 80,
120, 160).

Figure 20: Reconstructed background from “stefan” sequence. Note that
the player is not visible even though there is no input video frame
without the player.

Segmentation and Classification of Moving Video Objects 29

Figure 21: Segmentation results of “road” test sequence (frames 20, 40, 70,
75).

Figure 22: CSS matching results for selected frames of the “stefan”-sequence.

Chapter 25 30

REFERENCES

[1] S. Abbasi and F. Mokhtarian. “Shape similarity retrieval under affine
transform: Application to multi-view object representation and
recognition.” Proc. International Conference on Computer Vision, pp.
450-455. IEEE, 1999.

[2] D. Farin and P. H. N. de With. “A new similarity measure for sub-
pixel accurate motion analysis in object-based coding”.Proceedings of
the 5th World Multi-Conference on Systemics, Cybernetics and
Informatics (SCI), pp. 244-249, July 2001.

[3] O. D. Faugeras. Three-dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, Cambridge, MA, 1999.

[4] M. Fischler and R. Bolles. “Random sample concensus: A paradigm
for model fitting with applications to image analysis and automated
cartography.” Communications ACM, 24(6):381-395, 1981.

[5] C. Harris and M. Stephens. “A combined corner and edge detector”.
Proc. Alvey Vision Conference, pp. 147-151, 1988.

[6] R. Hartley and A. Zisserman. Multiple view geometry in computer
vision. Cambridge University Press, Cambridge, 2001.

[7] B. K. P. Horn. Robot Vision. MIT Press, Cambridge, MA, 1986.

[8] M. Irani, P. Anandan. “About Direct Methods”. Vision Algorithms:
Theory and Pratice, International Workshop on Vision Algorithms, 267-
277, 1999.

sitting

walking
standing

walking

stand up

standing
walking

standing
walking

standing
stand up

sitting

 (a) (b)

Figure 23: Automatically extracted behavior description.

Segmentation and Classification of Moving Video Objects 31

[9] K. Levenberg. “A method for the solution of certain problems in least
squares”. Quart. Appl. Math., 2:164-168, 1944.

[10] S. Z. Li. Markov Random Field Modeling in Computer Vision. Artificial
Intelligence. Springer-Verlag, Tokyo, 1995.

[11] D. Marquardt. “An algorithm for least-squares estimation of nonlinear
parameters”. SIAM J. Appl. Math., 11:431-441, 1963.

[12] M. Massey and W. Bender. “Salient stills: Process and practice”. IBM
Systems Journalm, 35(3/4):557-573, 1996.

[13] F. Mokhtarian, S. Abbasi, and J. Kittler. “Efficient and robust
retrieval by shape content through curvature scale space”. Proc.
International Workshop on Image DataBases and MultiMedia Search,
pp. 35-42, 1996.

[14] F. Mokhtarian, S. Abbasi, and J. Kittler. “Robust and efficient shape
indexing through curvature scale space”. British Machine Vision
Conference, 1996.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C : The Art of Scientific Computing. Cambridge
University Press, New York, 1992.

[16] S. Richter, G. Kühne, and O. Schuster. “Contour-based classification
of video objects”. Proceedings of SPIE, Storage and Retrieval for Media
Databases, volume 4315, pp. 608-618, 2001.

[17] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier
Detection. John Wiley, New York, 1987.

[18] P. J. Rousseeuw and K. Van Driesen. “Computing LTS regression for
large data sets”. Institute of Mathematical Statistics Bulletin, 27(6),
November/December 1998.

[19] C. Schmid, R. Mohr, and C. Bauckhage. “Evaluation of interest point
detectors”. International Journal of Computer Vision, 37(2):151-172,
June 2000.

[20] R. Szeliski. “Image mosaicing for tele-reality applications”. Technical
Report 94/2, Digital Equipment Corporation, Cambridge Research,
June 1994.

[21] L. Teodosio and W. Bender. “Salient video stills: content and context
preserved”. ACM Multimedia, 1993.

[22] P. H. S. Torr, A. Zisserman. “Feature based methods for structure
and motion estimation”. Vision Algorithms: Theory and Pratice,
International Workshop on Vision Algorithms, 278-294, 1999.

Chapter 25 32

INDEX

Camera motion 3

Perspective motion model 4

Affine motion model 4

Translatorial motion model 4

Feature-based estimation 5

Gradient-based estimation 5

Direct methods 5

Harris corner detector 6

Feature correspondences 9

Model parameter estimation 10

Least squares regression 10

Robust estimation 11

Least-trimmed squares regression 12

Levenberg-Marquardt minimization 14

M-estimator 16

Background reconstruction 18

Change detection masks 19

Sum of spatial distances 20

Markov random fields 21

Object classification 23

Curvature scale space 23

Object behavior 26

