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1. INTRODUCTION 
Despite very optimistic predictions in the early days of Artificial Intelligence 
research, a computer vision system that interprets image sequences acquired 
from arbitrary real-world scenes still remains out of reach. Nevertheless, 
there has been great progress in the field since then and a number of 
applications emerged within different areas. Of particular interest for several 
applications are capabilities for object segmentation and object recognition.
Algorithms from the former category support the segmentation of the 
observed world into semantic entities, thus allow a transition from signal 
processing towards an object-oriented view. Object recognition approaches 
allow the classification of objects into categories and enable for conceptual 
representations of still images or videos. 

The goal of this chapter is the development of a classification system for 
objects that appear in videos. This information can be used to index or 
categorize videos and it thus supports object-based video retrieval. In order 
to keep the subject manageable, the system is embedded into a set of 
constraints: The segmentation module relies on motion information, thus it 
can only detect moving objects. Furthermore, the classification module only 
considers the two-dimensional shape of the segmented objects. Therefore, 
just a coarse classification of the objects into generic classes (e.g., cars, 
people) is possible. 

The remainder of the chapter is organized as follows: First of all, in 
summarizing our approach, Section 2 serves as a guideline through the 
subsequent sections. In Section 3, camera models and the estimation of their 
parameters are described. Next, we discuss our approach to object 
segmentation in Section 4. Section 5 introduces the video object 
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classification system and Section 6 concludes the chapter with experimental 
results. 

2. SYSTEM ARCHITECTURE 
Our system for video object classification consists of two components, 
namely a segmentation module and a classification module (cf. Figure 1). 

Based on motion cues the camera motion within the scene is determined 
(motion estimation) and a background image for the entire sequence is 
constructed (background mosaic). During the construction process, parts 
belonging to foreground objects are removed by temporal filtering. Then, 
object segmentation is performed by evaluating differences between the 
current frame and the reconstructed background mosaic (segmentation).  

The object masks determined by the segmentation algorithm are fed forward 
to the classification module. For each mask, an efficient shape-based 
representation is calculated (contour description). Then, this description is 
matched to pre-calculated object descriptions stored in a database 
(matching). The final classification of the object is achieved by integrating the 
matching results for a number of successive frames. This adds reliability to 
the approach since unrecognizable single object views occurring in the video 
are insignificant with respect to the whole sequence. Moreover, it allows an 
automatic description of object behavior. 

background mosaic

segmentation

motion estimation
mage sequence

Object Classification

Object Segmentation

classified video object

database

prototypes
with object

matching processcontour description

Figure 1: Architecture of the video object classification system. 
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3. CAMERA MOTION COMPENSATION 
If videos are recorded with a moving camera, not only the foreground objects 
are moving, but also the background. The first step of our segmentation 
algorithm determines the motion due to changes in the camera parameters. 
This allows to stabilize the background such that only the foreground objects 
are moving relative to the coordinate system of the reconstructed 
background. It is usually assumed that the background motion is the 
dominant motion in the sequence, i.e., its area of support is much larger 
than the foreground objects. 

In order to differentiate between foreground and background motion, one has 
to introduce a regularization model for the motion field. This model should be 
general enough to describe all types of motion that can occur for a single 
object, but on the other hand, it should be sufficiently restrictive that two 
motions that we consider “different” can not be described by the same model. 
The motion model also allows to determine motion in areas in which the 
texture content is not sufficient to estimate the correct motion. 

3.1 CAMERA MOTION MODELS 

We use a world model in which the image background is planar and non-
deformable. This assumption, which is valid for most practical sequences, 
allows us to use a much simpler motion model as would be needed for the 
general case of a full three-dimensional structure. 

Using homogeneous coordinates, the projection of a 3D scene to an image 
plane can be formulated in the most general case by 

( ) ( )TT zyxPwyx 1'' ⋅= , where P  is a 43×  matrix (see [3,6,7]). As 
we are only interested in the transformation of one projected image to 
another projected image at a different camera position (c.f. Fig. 2), we can 
arbitrarily change the world coordinate system such that the background 
plane is located at 0=z . In this case, the projection equation reduces to 
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The 33×  matrix on the right denotes a plane-to-plane mapping 

(homography). Let iH  be the homography to project the background plane 

onto the image plane of frame i. Then, we can determine the transformation 
from image plane i to j as 
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Figure 2: Projection of background plane in world coordinates to image 
coordinate systems of images i  and j .

Since homogeneous coordinates are scaling invariant, we can set 

33/' hhh ijij = and get with a renaming of matrix elements 
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Hence, the transformation between image frames can be written as 
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This model is called the perspective camera motion model. In this 
formulation, it is easy to see that the ija  correspond to an affine 

transformation, xt , yt are the translatorial components, and xp , yp are the 

perspective parameters. A disadvantage of the perspective motion model, 
that will become apparent in the next section, is that the model is non-
linear. If the viewing direction does not change much between successive 
frames, the perspective parameters xp , yp  can be neglected and can be set 

to zero. This results in the affine camera motion model
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Since the affine model is linear, the  parameters can be estimated easily. The 
selection of the appropriate camera model depends on the application area. 
While it is possible to use the most general model in all situations, it may be 
advantageous to restrict to a simpler model. A simple motion model is not 
only easier to implement, but the estimation also converges faster and is 
more robust than a model with more parameters. In some applications, it 
may even be possible to restrict the affine model further to the translatorial 
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model. Here, )( ija  equals the identity matrix and only the translatorial 

components xt , yt  remain: 

( ) ( ) ( ) .'' T
yx

TT ttyxyx +=  (6) 

                           

(a) translation (b) scaling (c) rotation (d) shear (e) perspective

Figure 3: Different plane transformations. While transformations (a)-(d) are 
affine, perspective deformations (e) can only be modeled by the perspective 
motion model. 

3.2 MODEL PARAMETER ESTIMATION  

In parameter estimation, we search for the camera model parameters that 
best describe the measured local motion. Algorithms for camera model 
parameter estimation can be coarsely divided into two classes: feature-based 
estimation [22] and direct (or gradient-based) estimation [8]. The idea of model 
estimation based on feature correspondences is to identify a set of positions 
in the image that can be tracked through the sequence. The camera model is 
then calculated as the best fit model to these correspondences. In direct 
matching, the best model parameters are defined as those resulting in the 
difference frame with minimum energy. This approach is usually solved by a 
gradient descent algorithm. Hence, it is important to have a good initial 
estimate of the camera model to prevent getting trapped in a local minimum. 
As the probability for running into a local minimum increases with large 
displacements, a pyramid approach is often used. The image is scaled down 
several levels and the estimation begins at the lowest resolution level. After 
convergence, the estimation continues at the next higher resolution level 
until the parameters for the original resolution are found. 

Since direct methods provide a higher estimation accuracy than feature-
based approaches, but require a good initialization to assure convergence, we 
are using a two-step process. First, feature-based estimation which can cope 
with large displacements is used to obtain an initial estimate. Based on this 
model, a direct method is used to increase the accuracy.  

3.3 FEATURE-BASED ESTIMATION 

Feature-based estimation is based on a set of features in the image that can 
be tracked reliably through the sequence. If features can be well localized, 
image motion can be estimated with high confidence. On the other hand, for 
pixels inside a uniformly colored region, we can not determine the correct 
object motion. Even for pixels that lie on object edges, only the motion 
component perpendicular to the edge can be determined (see Figure 4a). To 
be able to track a feature reliably, it is required that the neighborhood of the 
feature shows a structure that is truly two-dimensional. This is the case at 
corners of regions, or points where several regions overlap (see Figure 4b-d). 
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3.3.1 Feature Point Selection  

For the selection of feature points, we employ the Harris (or Plessey) corner 
detector [5] which is described in the following. Let { }ipP =  be the set of 

pixels in an image with associated brightness function I(p). To analyze the 
structure at pixel ( ) Iyxp pp ∈= , a small neighborhood IpN ⊂)(  around 

p is considered. We denote the image gradient at p as 

( )Tyx pgpgpI )()()( =∇ . Let us examine how the distribution of gradients 

has to look like for feature point candidates. Figure 5 depicts scatter-plots of 
the gradient vector components for all pixels inside the neighborhood of 
some selected image positions. We can see in Figure 5c that for 
neighborhoods that only exhibit one-dimensional structure, the gradients are 
mainly oriented into the same direction. Consequently, the variance is large 
perpendicular to the edge and very small along the edge. This small variance 
indicates that the feature cannot be well localized. Favorably, features 
should expose a neighborhood where the gradient components are well 
scattered over the plane and, thus, the variance in both directions is high (cf. 
Figure 5d,e). 

Approximating a bivariate Gaussian distribution, we determine the principal 
axes of the distribution by using a principal component decomposition of the 
correlation matrix 
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The length of the principal axes corresponds to the eigenvalues 21 λλ ≤ of C.

Based on these eigenvalues, we can introduce a classification of the pixel p.
We differentiate between the classes flat for low 21,λλ , edge for 21 λλ << , or 

corner, textured for large 21,λλ . Since the computation of eigenvalues is 
computationally expensive (note that the computation has to be performed 
for every pixel in the image), Harris and Stephens proposed to set the 
classification boundaries such that an explicit computation of the 

?

(a) (b) (c) (d) 

Figure 4: Feature points on edges (a) cannot be tracked reliably because a high 
uncertainty about the position along the edge remains. Feature points at 
corners (b), crossings (c), or points where several regions overlap (d) can be 
tracked very reliably. 
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eigenvalues is not required. Exploiting the fact that )(21 CTr=+ λλ  and 

)(21 CDet=λλ , they defined a corner response value as 

22
2121 )()()( CTrkCDetkr ⋅−=+−= λλλλ     (8) 

where k is usually set to 0.06. The class boundaries are chosen as shown in 
Figure 6. After r(x,y) has been computed for each pixel, feature points are 
obtained from the local maxima of r(x,y) where lowtCTr >=+ )(21 λλ  (i.e., the 

pixel is not classified as a flat pixel). 

To improve the localization of the feature points, Equation 7 is modified to a 
weighted correlation matrix where the gradients are weighted with a 
Gaussian kernel w(p) as 
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This increases the weight of central pixels and the feature point is moved to 
the position of maximum gradient variance. Without this weighting, the best 
position to place the feature point is not unique. The detector response is 
equal as long as the corner is completely contained in the neighborhood 
window. A sample result of automatic feature point detection is shown in 
Figure 5b. 

 (a) original image (b) detected feature points 
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Figure 5: Scatter plots of gradient components for a selected set of
windows. 
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3.3.2 Refinement to Sub-Pixel Accuracy  

The corner detector described so far locates feature points only up to integer 
position accuracy. If the true feature point is located near the middle 
between pixels, jitter may occur. This can be reduced by estimating the sub-
pixel position of the feature point. 

The refinement is computed independently for the x  and y  coordinate. In 
the following, we concentrate on the x  direction. The y  direction is handled 
similarly. For each feature point, we match a parabola 

cxbxaxv +Δ⋅+Δ⋅=Δ 2)()(  through the Harris response surface ),( yxr ,
centered at the considered feature point. The fitted parabola is defined by the 
values of r  at the feature point position and its two neighbors. By setting 

pxxx −=Δ , where px  is the feature point position (cf. Figure 7), we get 

)1(−v ),1( pp yxr −= cba +−=

)0(v ),( pp yxr= c= (10)

)1(v ),1( pp yxr += cba ++=

After setting 0d/d =Δxv , this leads to 
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Since ),( pp yxr  is a local maximum, it is guaranteed that 1|| <Δx . The new 

feature point position is set to the maximum of v , i.e., xxx pp Δ+=′ .

3.3.3 Determining Feature Correspondences 

After appropriate feature points have been identified, we have to establish 
correspondences between feature points in successive frames. There are two 
main problems in establishing the correspondences. First, not every feature 
point has a corresponding feature point in the other frame. Because of image 
noise or object motion, new feature points may appear or disappear. 
Fortunately, the Harris corner detector is very stable so that most feature 
points in one frame will also appear in the next [19]. The second problem is 
that the matching can be ambiguous if there are several feature points 
surrounded by a comparable texture. This may happen, e.g., when there are 
objects with a regular texture or several identical objects in the image. 

Let 21, FF  be the set of feature points of two successive images 21, II . Our 
feature matching algorithm works as follows: 

1. For each pair of features 21, FjFi ∈∈  at positions );(),;( jjii yxyx ,

calculate the matching error  

�� <Δ≤−<Δ≤−
Δ+Δ+−Δ+Δ+=

88 2188, |),(),(|
y jjiixji yyxxIyyxxId .

If the Euclidean distance between the feature points exceeds a 
threshold maxdt , which is set to about 1/3 of the image width, jid , is

set to infinity. The rationale for this threshold will be given shortly. 

2. Sort all matching errors obtained in the last step in ascending order. 

3. Discard all matches whose matching error exceeds a threshold maxet .

4. Iterate through all pairs of feature points with increasing matching 
error. If neither of the two feature points has been assigned yet, 
establish a correspondence between the two. 

Consequently, the matching process is a greedy algorithm, where best fits 
are assigned first. If there are single features without a counterpart, the 
probability that they will be assigned erroneously is low since all features 
that have correct correspondences have been assigned before and, thus, are 
not available for assignment any more. Moreover, the matching error will be 
high so that it will usually exceed maxdt .

There is one special case that justifies the introduction of maxet . Consider a 

camera pan. Many feature points will disappear at one side of the image and 
new feature points will appear at the opposite side. After all feature points 
that appear in both frames are assigned, only those features at the image 
border remain. Thus, if the matching error is low, correspondences will be 
established between just to disappear and just appeared features across the 
complete image, which is obviously not correct. As we know that there will 
always be a large overlap between successive frames, we also know that the 
maximum motion can not be faster than, say, 1/3 of the image width 
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between frames. Hence, we can circumvent the problem by introducing the 
maximum distance limit maxet .

3.3.4 Model Parameter Estimation by Least Squares Regression 

Let ii yx ˆ,ˆ  be the measured position of feature i , which had position ii yx ,  in 

the last frame. The best parameter set θ  should minimize the squared 
Euclidean distance between the measured feature location and the position 

according to the camera model 222 )ˆ'()ˆ'( iiiii yyxxe −+−= . Hence, we 

minimize the sum of errors  

� −+−=
i

iiii yyxxE 22 )ˆ'()ˆ'( . (12) 

Using the affine motion model with ( )yx taataa 22211211=θ , we 

obtain the solution by setting the partial derivatives iE θ∂∂ /  to zero, which 

leads to the following linear equation system: 
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Clearly, this equation system can be solved efficiently by splitting it up into 
two independent 33×  systems. 

While this direct approach works for the affine motion model, it is not 
applicable to the perspective model because the perspective model is non-
linear. One solution to this problem is that instead of using Euclidean 
distances 

2
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to use algebraic distance minimization, where we try to minimize the 
residuals 

2
ir

22)1( iiyix eypxp ⋅++=

( ))ˆ()ˆ()1( 22
iiiiiyix yyxxypxp −′+−′⋅++=
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2
1211 )ˆˆˆ( iiiyiixxii xxypxxptyaxa −−−++= (15)

2
2221 )ˆˆˆ( iiiyiixyii yyypyxptyaxa −−−+++

Note that because of the multiplication with 2)1( ++ iyix ypxp , minimization 

of 2
ir  is biased, i.e., feature points with larger ii yx ,  have a greater influence 

on the estimation. This undesirable effect can be slightly reduced by shifting 
the origin of the coordinate system into the center of the image. 

The sum of residuals 2
ir  can be minimized by a least squares (LS) solution of 

the overdetermined equation system 
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A number of efficient numerical algorithms (e.g., based on singular value 
decomposition) can be found for this standard problem in [15]. 

3.3.5 Robust Estimation 

The main drawback of the LS method as described above is that outliers, i.e., 
observations that deviate strongly from the expected model, can totally offset 
the estimation result. Figure 8 illustrates this problem. For this purpose, we 
calculated motion estimates from two frames of a real-world sequence 
recorded by a panning camera. The motion vectors due to the pan are clearly 
visible in the background. In addition, the walking person in the foreground 
causes motion estimates that deviate from those induced by camera motion. 
Figure 8b displays the global motion field estimated by the LS method. 
Obviously, the mixture of background and object motion did not lead to 
satisfactory results. Instead, the camera parameters were optimized to 
approximate both, background and object motion.  

In order to estimate camera parameters reliably from a mixture of 
background and object motion, one has to distinguish between observations 
belonging to the global motion model (inliers) and those resulting from object 
motion (outliers). Figure 8c displays the same motion estimates as before. 
This time, however, only a subset of vectors (drawn in black) is used for the 
LS estimation. The obtained camera motion model depicted in Figure 8d is 
estimated exclusively from inliers and, thus, clearly approximates the 
panning operation. 
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To eliminate outliers from the estimation process, one can apply robust 
regression methods. Widely used robust regression methods comprise 
random sample concensus (RANSAC) [4], least median of squares (LMedS), 
and least-trimmed squares (LTS) regression [17]. Those methods are able to 
calculate the parameters of our regression problem even when a large 
fraction of the data consists of outliers. 

The basic steps are similar for all of those methods. First of all, a random 
subset of the data set is drawn and the model parameters are calculated 
from this subset. The subset size p equals the number of parameters to be 
estimated. For instance, calculating the 8 parameters of the perspective 
model requires 4 feature correspondences, each introducing two constraints. 
A randomly drawn subset containing outliers results in a poor parameter 
estimation. As a remedy, N  subsets are drawn and the parameters are 
calculated for each of them. By choosing N  sufficiently high, one can assure 
up to a certain probability that at least one “good” subset, i.e., a sample 
without outliers, was drawn. The probability for drawing at least one subset 

without outliers is given by NpNpP ))1(1(1:),,( εε −−−=  where ε  denotes 
the fraction of outliers. Conversely, the required number of samples to 
ensure a high confidence can be determined from this equation. 

 (a) (b) 

 (c) (d) 

Figure 8: Estimation of camera parameters. (a) motion estimates, (b)
estimation by least squares, (c) motion estimates (white vectors are
excluded from the estimation), (d) estimation by least-trimmed squares.
regression. 
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For each parameter set calculated from the subsets, the model error is 
measured. Finally, the model which fits the given observation best is 
retained. The main difference between the three methods RANSAC, LMedS, 
and LTS is the measure for the model error. We have chosen to use the LTS 
estimator because it does not require a selection threshold as RANSAC and it 
is computationally more efficient than LmedS [18]. The LTS estimator can be 
written as 

�
=

h

i
nir

1
:

2

ˆ
)(min

θ
 (17) 

where n  is the input data size and nnn rr :
2

:1
2 )()( ≤≤�  denote the squared 

residuals given in ascending order. Similar to the LS method, the sum of 
squared residuals is minimized. However, only the h  smallest squared 
residuals are taken into account. Setting h  approximately to 2/n  eliminates 
half of the cases from the summation, thus, the method can cope with about 
50% outliers. 

Since the computation of the LTS regression coefficients is not 
straightforward, the basic steps are summarized in the following. For a 
detailed treatment and a fast implementation called FAST-LTS, we refer to 
[17,18]. 

To evaluate Equation 17, an initial estimate of the regression parameters is 
required. For this purpose, a subset 0S  of size p  is drawn randomly from 

the data set. Solving a linear system created by 0S  yields an initial estimate 

of the parameters denoted by 0̂θ . Using 0̂θ  we can calculate the residuals 

ir0 , ni ,,1�=  for all n cases in the data set. 

The estimation accuracy is increased by applying several compaction steps.
Sorting ir0  by absolute value yields a subset 0H  containing the h  cases 

with the least absolute residuals. Furthermore, a first quality of fit measure 

can be calculated from this subset as �∈
=

0
:

2
00 )(:

Hi nirQ . Then, based on 

0H , a least squares fit is calculated yielding a new parameter estimate 1̂θ .

Again, the residuals ir1  are calculated and sorted by absolute value in 

ascending order. This yields a subset 1H  which contains the h  cases that 

possess the least absolute residuals with respect to the parameter set 1̂θ .

The quality of fit for 1H  is given by �∈
=

1
:

2
11 )(:

Hi nirQ . Due to the properties 

of LS regression, it can be assured that 01 QQ ≤ . Thus, by iterating the above 

procedure until 1−= kk QQ , the optimal parameter set can be determined for a 

given initial subset. 
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3.4 DIRECT METHODS FOR MOTION ESTIMATION 

Although motion estimation based on feature correspondences is robust and 
can handle large motions, it is not accurate enough to achieve sub-pixel 
registration. Particularly in the process of building the background mosaic, 
small errors quickly sum up and result in clear misalignments. Given a good 
initial motion estimate from the feature matching approach, a very accurate 
registration can be calculated using direct methods. These techniques  
minimize the motion compensated image difference given as 

��
==

−′′′==
),(),(

)),(),((min)(minmin
yxiyxi

i yxIyxIeE γγ
θθθθ

. (18) 

y)I(x, denotes the image brightness at position y)(x,  and )y',(x'I'  denotes 
the brightness at the corresponding pixel (according to the selected motion 

model) in the other image. For the moment, we assume that 2)( ee =γ , i.e., 
we use the sum of squared differences as difference measure. Later, we will 
replace this by a robust M-estimator. 

Minimization of E with respect to the motion model parameter vector θ  is a 
difficult problem and can only be tackled with gradient descent techniques. 
We are using a Levenberg-Marquardt [9,11,15] minimizer because of its 
stability and speed of convergence. The algorithm is a combination of a pure 
gradient descent and a multi-dimensional Newton algorithm. 

3.4.1 Levenberg-Marquardt-Minimization 

Starting with an estimation )(iθ , the gradient descent process determines 

the next estimation )1( +iθ  by taking a small step down the gradient  

)(
)()1(

iEii

θαθθ ∇⋅−=+ , (19) 

where α is a small constant, determining the step size. One problem of pure 
gradient descent is the choice of a good α  since small values result in a slow 
convergence rate, while large values may lead far away from the minimum. 

The second method is the Newton algorithm. This algorithm assumes that if 
)(iθ  is near a minimum, the function to be minimized can often be 

approximated by a quadratic form Q  as 

T
iii EEEQE θθθ θθθθθ ⋅∇⋅+∇⋅+=≈ )()()(

2

2

1
, (20) 

where E2∇ denotes the Hessian matrix of E .

If the Hessian matrix is positive definite, 

0iffminarg (min)
(min) =∇= θθθ

θ QQ . (21) 

Hence, because of 

)( )()1(2
)()()1(

ii
iii EEQ θθθθθ −⋅∇+∇=∇ +

+  (22) 
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we can directly jump to the minimum of Q  by setting 

)()(
12)()1(

ii EEii

θθθθ ∇⋅∇−= −+ . (23) 

Note the similar structure of this equation compared to Equation 19. Instead 

of taking the inverse of the Hessian, the step )()1()( iii θθδθ −= +  can also be 
computed by solving the linear equation system 

EE i −∇=⋅∇ )(2 δθ . (24) 

The Levenberg-Marquardt algorithm solves two problems at once. First, the 
factor α  in Equation 19 is chosen automatically, and second, the algorithm 
combines steepest descent and Newton minimization into a unified 
framework. 

If we are comparing the units of )(iδθ  with those in the Hessian, we can see 
that only the diagonal entries of the Hessian provides some information 
about scale. So, we set the step size (independently for each component kθ )

as

kk
k E)(

1
2∇

=
λ

α . (25) 

λ  is a new scaling factor which is controlled by the algorithm. To combine 
steepest descent with the Newton algorithm, [9,11] propose to define a new 
matrix D  with 

jkd
jkE)( 2∇= kj ≠for 

kkd )1()( 2 λ+⋅∇= kkE diagonal)on the(elements

Replacing the Hessian of Equation 24 with D , we get 

Ei −∇=⋅ )(D δθ . (26) 

Note that for 0=λ  Equation 26 reduces to Equation 24 (i.e., the Newton 
algorithm), while for large λ  the matrix D  becomes diagonal dominant and 
the algorithm thus behaves like a steepest descent algorithm. The Levenberg-
Marquardt minimization algorithm uses λ  to control the minimization 
process and works as follows: 

1. Choose an initial λ  (e.g., 001.0=λ ). 

2. Solve Equation 26 to get the parameter update vector )(iδθ .

3. If )()()( iii EE θδθθ ≥
+

, the update does not improve the solution. Hence, 

we increase λ  by a factor of 10 (to reduce the step size) and go back 
to Step 2. 

4. If )()()( iii EE θδθθ <
+

, the update improves the solution. Hence, we set 

)()()1( iii δθθθ +=+  and decrease λ  by a factor of 10. 
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5. When λ  exceeds a high threshold, even the last small steps did not 
improve the solution and we stop. 

Adapting this technique to our motion estimation problem, we must 
determine the Hessian matrix and gradient vector for a given parameter 
estimate θ . In the following, we assume the perspective motion model from 
Equation 4. The gradient vector can be determined easily from 
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with the shortcut 1++= iyixi ypxpZ . Hence, with 2)( ee =γ  the gradient 

vector is simply 
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We simplify the computation of the Hessian by ignoring the second order 
derivative terms: 
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Hence, we get 

� ∂
∂⋅

∂
∂⋅=∇

i k

i

j

i
jk

ee
E

θθ
2)( 2 . (30) 

3.4.2 Applying an M-estimator 

The algorithm described above assumes that the whole image moves 
according to the estimated motion model. However, in our application, this is 
not the case since foreground objects generally move differently. This 
introduces large matching errors in areas of the foreground objects. The 
consequence is that this mismatch distorts the estimation because the 
algorithm also tries to minimize the matching error in the foreground region. 
As the true object position is not known yet, it is not possible to exclude the 
foreground regions from the estimation process. This problem can be 
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alleviated by using a limited error function for )(xγ  instead of the squared 
error. For simplicity, we use 

�
�
� <

=
else.

||for 
)(

2

2

t

tee
eγ (31) 

Introducing this error function into Equation 18 and computing the gradient 
and Hessian is particularly simple as 

��

�
�
�

<
∂
∂

=
∂

∂

.else0

if)(
2

t||e
e

e i
i

i

i

i θθ
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 (32) 

Figure 9 shows two difference frames, the first using squared error as 
matching function and the second using the robust distance function. It can 
be seen that the registration error in the background region is smaller for the 
robust distance function. 

4. DETERMINING OBJECT MASKS 
The principle of our segmentation algorithm is to compute the difference of 
the current frame to a scene background image which does not contain any 
foreground objects. The background image is automatically constructed from 
the sequence such that the background adapts itself to changes or varying 
illumination. Even if the background is never visible without any foreground 
objects, the algorithm is capable to artificially recreate it. 

      
(a) (b) 

Figure 9: Difference frame after Levenberg-Marquardt minimization. (a)
shows residuals using squared differences as error function, (b) shows
residuals with saturated squared differences. It is visible that the robust
estimation achieves a better compensation. Especially note the text in the
right part of the image. 
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Since the difference between input image and background contains much 
error due to camera noise or small parts of the object having the same color 
as the background, a regularization of the object shape is applied to the 
difference frame.  

4.1 BACKGROUND RECONSTRUCTION 

The motion estimation step provides the motion model 1, +jjθ  between 

consecutive frames j  and 1j + . By considering the transitive closure as the 

concatenation of motion transformations, we can define all kj ,θ  between 

arbitrary frames j , k . If we fix the first frame as the reference coordinate 

system for the background reconstruction, we can add frame j  to the 

background by applying the transformation j,1θ . To prevent the drift from 

slight errors in the motion estimation step, the direct estimation step is not 
applied to successive frames but to the input frame with respect to the 
current background mosaic. Figure 10 shows how input frames are 
assembled into a combined mosaic. 

In general, the input video will contain foreground objects in most of the 
frames. However, it is important that the reconstructed background does not 
contain these objects. As it is not a-priori clear which parts are foreground 
and which are background, we define everything as background that is 
stable for at least b  frames. The reconstruction algorithm stores the last b2
background mosaics obtained so far. The reconstructed background image is 
then determined by applying a temporal median filter [12,21] over these 
pictures (cf. Figure 11).  Clearly, if at least b  pictures have nearly the same 
color at a pixel, this values will be set in the background reconstruction. 

Figure 10: Reconstruction of background based on compensation of
camera motion between video frames. The original video frames are
indicated with borders. 
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This approach works well if the objects are moving in the scene. If they stay 
too long at the same position, they will eventually become background. A 
sample reconstructed background from the “stefan” sequence can be seen in 
Figure 20. 

4.2 CHANGE DETECTION MASKS 

The principle of our segmentation algorithm is to calculate the change 
detection mask (CDM) between the background image and the input frames. 
In the area where the foreground object is located, the difference between 
background and input frame will be high. Note that the approach of taking 
the difference to a reconstructed background has several advantages over 
taking differences between successive frames: 

1. The segmentation boundaries are more exact. If differences are 
computed between successive frames, not only the new position of an 
object will have large differences, but also the uncovered background 
areas. This results in annoying artifacts because fast moving objects 
are visible twice. 

2. Objects that do not move for some time or that are only moving 
slowly can not be segmented. Moreover, a slowly moving region with 
almost uniform color would only show differences at the edges in 
successive frames. 

3. The reconstructed background can be used for object-based video 
coding algorithms like MPEG-4 where the background can be 
transmitted independently (as a so called “background-sprite”), which 
reduces the required bit-rate as only the foreground objects have to 
be transmitted. 

ti
m

e

reconstructed background

median filtering

Figure 11: Aligned input frames are stacked and a pixel-wise median filter
is applied in the temporal direction to remove foreground objects. 

 (a) frame 1 (b) frame 2 (c) difference 

Figure 12: Computing the difference between successive frames results in
unwanted artifacts. The first two pictures show two input frames with
foreground objects. The right picture show the difference. Two kinds of
artifacts can be observed. First, the circle appears twice since the
algorithm cannot distinguish between appearing and disappearing.
Second, part of the inner area of the polygon is not filled because the pixels
in this area do not change their brightness. 
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4.3 IMPROVED CHANGE DETECTION BASED ON THE SSD-3 MEASURE 

With standard change detection based on squared or absolute differences, a 
typical artifact can be observed. If the images contain sharp edges or fine 
texture, these structures usually can not be cancelled completely because of 
improper filtering and aliasing in the image acquisition process. Hence, fine 
texture and sharp edges are often accidentally detected as moving object. 

One technique to reduce this effect is to use the sum of spatial distances 
(SSD-3) measure [2] to compute the difference frame. The principle of this 
measure is to calculate the distance that a pixel has to be moved to reach a 
pixel of similar brightness in the reference frame. In the one dimensional 
case, it is defined as 

),,min( 1013 ddddSSD −− =  (33) 

with 

( ) � �( )
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. (34) 

For the two-dimensional case, this measure is computed independently for 
the horizontal and vertical direction and the minimum is taken. For an in-
depth explanation of this measure, see [2]. The difference frames obtained 
with this measure compared to standard squared error is depicted in Fig. 13. 

   

 (a) squared error (b) SSD-3 

Figure 13: Difference frames using squared error and SSD-3. Note that
SSD-3 shows considerably less errors at edges caused by aliasing in the
sub-sampling process. 
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4.4 SHAPE REGULARIZATION USING MARKOV RANDOM FIELDS 

If the generation of a binary object mask from the difference frame is done 
pixel by pixel with a fixed threshold, we have to face a lot of wrongly 
classified pixels (cf. Figure 15a). Since most real objects have smooth 
boundaries, we improve the segmentation by a shape regularization, which is 
done using a Markov random field (MRF) model.  

The formal definition of our segmentation problem is that we want to assign 
a label out of the label set  L={ background, foreground } to each pixel 
position p . For each pixel position there is a random variable pF  with 

values Lf p ∈ . The probability that pixel p  is assigned label pf  is denoted 

as )( pp fFP = . A random field is Markovian if the probability of a label 

assignment for a pixel is only dependent on the neighborhood of this pixel: 

)|()|( )(}{ pNpppIpp FfFPFfFP === − , (35) 

where }{ pIF −  denotes the label configuration of the whole image except pixel 

p  and )( pNF  the configuration in a neighborhood of pixel p . We define the 

neighborhood of p  as the 8-neighborhood, while differentiating between 
straight and diagonal neighbors (see Figure 14). 

Since the probabilities )|( )( pNpp FfFP =  are usually hard to define, Markov 

random fields are often modelled as Gibbs random fields (GRF). It can be 
shown that both descriptions are equivalent [10]. A GRF is defined through 
the total label configuration probability )( fP  as 

)(1
1)(

fU
TeZfP

−− ⋅=  (36) 

where Z  is a normalization constant to ensure that 1)( =� fPf . In the 

following, we will always set the temperature parameter 1=T . )( fU  is the 

energy function, which is defined as  

�
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=
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c fVfU )()( , (37) 
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 (a) neighborhood (b) straight cliques (c) diagonal cliques 

Figure 14: Definition of pixel neighborhood. Picture (a) shows the two
classes of pixel neighbors; straight (1) and diagonal (2). These two classes
are used to define the second order cliques. Straight cliques (b) and
diagonal cliques (c). 
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in which the sum is over all cliques in the image and )( fVc  is a clique 

potential. Higher clique potentials result in lower probabilities for this clique 
configuration. Cliques are subsets of related pixel positions in the image. In 
our application, we are using an Auto-Logistic model, which only uses 
cliques of single order (the pixels themselves) and of second order (cf. Figure 
14). Thus, the energy function can be written as 

� ��
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pp
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p ffVfVfU
)('

',21 )()()( . (38) 

First order clique potentials )(1 pV  are set according to the difference frame 
information, i.e., how probable a pixel p belongs to foreground objects given 

its difference frame value )( pd .

��

�
�
�

=−⋅
=⋅

=
−

−

.backgroundfor )0.1(
and,foregroundfor )( 2

2

)(

)(

1
p

pd

p
pd

p
fe

fe
fV

β
β

 (39) 

The second order clique potentials are set such that smooth regions are 
preferred. I.e., cliques which contain different labels are assigned more 
energy. More specifically, we use 
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The parameter μ  is set differently for the two types of cliques with lower 
values for diagonal cliques as the corresponding pixels are farther away. The 
label configuration that maximizes the total field probability (Eq. 36) is 
obtained through an iterative Gibbs sampling algorithm [10]. Figure 15b 
shows the segmentation mask obtained with our MRF model compared to a 
pixel based classification. Applying MRF-based classification to each 
difference frame yields binary object masks for the entire video. 

 (a) per-pixel classification (b) MRF-based classification 

Figure 15: Segmentation results for per-pixel decision between foreground
and background object and MRF based segmentation 



Segmentation and Classification of Moving Video Objects 23

5. VIDEO OBJECT CLASSIFICATION 
The automatic segmentation procedure as described above provides object 
masks for each frame of the video. Based on these masks, further high-level 
processing steps are possible. To enable semantic scene analysis, it is 
required to assign object classes (e.g., persons, animals, cars) to the different 
masks. Furthermore,  object behavior (e.g., a person is sitting, stands up, 
walks away) can be described by observing the object over time. 

In our approach, object classification is based on comparing silhouettes of 
automatically segmented objects to prototypical objects stored in a database. 
Each real-world object is represented by a collection of two-dimensional 
projections (or object views). The silhouette of each projection is analyzed by 
the curvature scale space (CSS) technique. This technique provides a 
compact representation that is well suited for indexing and retrieval. 

Object behavior is derived by observing the transitions between object 
classes over time and selecting the most probable transition sequence. Since 
frequent changes of the object class are unlikely, occasional false 
classifications resulting from errors which occurred in previous processing 
steps are removed.  

5.1 REPRESENTING SILHOUETTES USING CSS  

The curvature scale space technique [1,13,14] is based on the idea of curve 
evolution, i.e., basically the deformation of a curve over time. A CSS image 
provides a multi-scale representation of the curvature zero crossings of a 
closed planar contour. 

Consider a closed planar curve )(uΓ representing an object view, 

( ){ },]1,0[)(),()( ∈=Γ uuyuxu  (41) 

with the normalized arc length parameter u . The curve is smoothed by a 
one-dimensional Gaussian kernel ),( σug of width σ . The deformation of the 
closed planar curve is represented by 

( ){ },]1,0[),(),,(),( ∈=Γ uuYuXu σσσ  (41) 

where ),( σuX  and ),( σuY  denote the components )(ux  and )(uy  after 

convolution with ),( σug . Varying σ  is equivalent to choosing a fixed 'σ
and applying the convolution iteratively. 

The curvature ),( σκ u  of an evolved curve can be computed using the 

derivatives ),( σuX u , ),( σuX uu , ),( σuYu , and ),( σuYuu  as 
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A CSS image ),( σuI  is defined by 

{ }0),(|),(),( == σκσσ uuuI . (43) 
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It contains the zero crossings of the curvature with respect to their position 
on the contour and the width of the Gaussian kernel (or the number of 
iterations, see Figure 16). During the deformation process, zero crossings 
vanish as transitions between contour segments of different curvature are 
smoothed out. Consequently, after a certain number of iterations, inflection 
points disappear and the shape of the closed curve becomes convex. Note 
that due to the dependence on curvature zero crossings, convex object views 
cannot be distinguished by the CSS technique. 

Significant contour properties that stay intact for a large number of 
iterations result in high peaks in the CSS image. Segments with rapidly 
changing curvatures caused by noise produce only small local maxima. In 
many cases, the peaks in the CSS image provide a robust and compact 
representation of an object view's contour. Note that a rotation of an object 
view on the image plane can be accomplished by shifting the CSS image left 
or right in a horizontal direction. Furthermore, a mirrored object view can be 
represented by mirroring the CSS image. 

Each peak in the CSS image is represented by three values, the position and 
height of the peak and the width at the bottom of the arc-shaped contour. 
The width specifies the normalized arc length distance of the two curvature 
zero crossings enframing the contour segment represented by the peak in the 
CSS image [16]. 

It is sufficient to extract the significant maxima (above a certain noise level) 
from the CSS image. For instance, in the example depicted in Figure 16, only 
five data triples remain and have to be stored after a small number of 
iterations. The database described in the following section stores up to 10 
significant data triples for each silhouette. 

arc length

iterations

Figure 16: Construction of the CSS image. Left: Object view (a) and
iteratively smoothed contour (b)-(d). Right: Resulting CSS image. 

      
 (a) (b) 

      
 (c) (d) 
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5.2 BUILDING THE DATABASE 

The orientation of an object and the position of the camera have great impact 
on the silhouette of the object. Therefore, to enable reliable recognition, 
different views of an object have to be stored in the database. 

Rigid objects can be represented by a small number of different views, e.g., 
for a car, the most relevant views are frontal views, side views, and views 
where frontal and side parts of the car are visible. 

For non-rigid objects, more views have to be stored in the database. For 
instance, the contour of a walking person in a video changes significantly 
from frame to frame.  

Similar views of one type of object are aggregated to one object class. Our 
database stores 275 silhouettes collected from a clip art library and from 
real-world videos. The largest number of images show people (124 images), 
animals (67 images), and cars (48 images). Based on behavior, the object 
class people is subdivided into the following object classes: standing, sitting, 
standing up, sitting down, walking, and turning around. 

5.3 OBJECT MATCHING 

Each automatically segmented object view is compared to all object views in 
the database. In a first step, the aspect ratio, defined as quotient of object 
width and height, is calculated. For two objects views with significantly 
different aspect ratios, no matching is carried out. If both aspect ratios are 
similar, the peaks in the CSS images of the two object views are compared. 
The basic steps of the matching procedure are summarized in the following 
[16]: 

• First, both CSS representations have to be aligned. For this purpose 
it might be necessary to rotate or mirror one of them. As mentioned 
above, shifting the CSS image corresponds to a rotation of the 
original object view. To align both representations, one of the CSS 
images is shifted so that the highest peak in both CSS images is at 
the same position.  

• A matching peak is determined for each peak in a given CSS 
representation. Two peaks match if their height, position and width 
are within a certain range. 

• If a matching peak is found, the Euclidean distance of the peaks in 
the CSS image is calculated and added to a distance measure. If no 
matching peak can be determined, the height of the peak is 
multiplied by a penalty factor and added to the total difference. 
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5.4 CLASSIFYING OBJECT BEHAVIOR 

The matching technique described above calculates the best database match 
for each automatically segmented object view. Since the database entries are 
labeled with an appropriate class name, the video object can be classified 
accordingly. The object class assigned to a segmented object mask can 
change over time because of object deformations or matching errors. Since 
the probability of changing from one object class to another depends on the 
respective classes, we assign additionally matching costs for each class 
change. 

Let )(idk  denote the CSS distance between an input object mask at frame i

and object class k from the database. Furthermore, let lkw ,  denote the 

transition cost from class k to l (cf. Figure 17). Then, we seek the 
classification vector c, assigning an object class to each input object mask, 
which minimizes  

1,)(min
−

+� iii cc
i

c
c

wid  . (44) 

This optimization problem can be solved by a shortest path search as 
depicted in Figure 18. With respect to the figure, )(idk  corresponds to costs 

assigned to the nodes and lkw ,  corresponds to costs at the edges. The 

optimal path can be computed efficiently using a dynamic programming 
algorithm. The object behavior can be extracted easily from the nodes along 
the minimum cost path. 

Figure 17: Weights for transitions between object classes. Thicker arrows
represent more probable transitions. 
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6. SYSTEM IMPLEMENTATION AND RESULTS 
As outlined above, our object classification system consists of a motion-
based segmentation module and a shape-based classification module. We 
start by discussing experimental results achieved by our segmentation 
module. For this purpose, the segmentation algorithm was applied to two 
real-world sequences, namely the “stefan” sequence used throughout this 
chapter and a “road” sequence recorded by a handheld camera. Figures 19 
and 21 depict some of the results. In Figure 20, the reconstructed 
background of the “stefan” sequence is displayed. We observe that the 
segmentation module separates the moving objects from the background 
very well. In the case of the “stefan” sequence, some moving parts in the 
audience are detected. In the “road” sequence the cars (and a pedestrian) are 
extracted very precisely. 

In order to classify the objects resulting from the segmentation process, the 
classification algorithms are applied to their shapes. Figure 22 displays some 
segmentation masks obtained by our automatic segmentation and the 
respective best match calculated from the shape database. In three cases the 
classification is successful and yields a reasonable match. In addition, we 
observe one mismatch which is due to a segmentation error and the fact that 
the database did not contain an appropriate representation of the running 
tennis player.  

Finally, let us consider the extraction of object behavior. In Figure 23, the 
left image displays a training sequence used to define object prototypes for a 
specific object behavior in the database. The right image depicts a test 
sequence with the automatically assigned class labels. The different stages of 
the object behavior were determined from the shortest path calculated from 
the CSS matching results and the object frames were selected from the 
middle between class transitions. 
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Figure 18: Extraction of object behavior.
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Figure 19: Segmentation results of “stefan” test sequence (frames 40, 80,
120, 160). 

Figure 20: Reconstructed background from “stefan” sequence. Note that
the player is not visible even though there is no input video frame
without the player. 
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Figure 21: Segmentation results of “road” test sequence (frames 20, 40, 70,
75). 

Figure 22: CSS matching results for selected frames of the “stefan”-sequence. 
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