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ABSTRACT

The segmentation of objects in video sequences constitutes
a prerequisite for numerous applications ranging from com-
puter vision tasks to second-generation video coding.

We propose an approach for segmenting video objects
based on motion cues. To estimate motion we employ the
3D structure tensor, an operator that provides reliable re-
sults by integrating information from a number of consecu-
tive video frames. We present a new hierarchical algorithm,
embedding the structure tensor into a multiresolution frame-
work to allow the estimation of large velocities.

The motion estimates are included as an external force
into a geodesic active contour model, thus stopping the
evolving curve at the moving object’s boundary. A level
set-based implementation allows the simultaneous segmen-
tation of several objects.

As an application based on our object segmentation ap-
proach we provide a video object classification system. Cur-
vature features of the object contour are matched by means
of a curvature scale space technique to a database containing
preprocessed views of prototypical objects.

We provide encouraging experimental results calculated
on synthetic and real-world video sequences to demonstrate
the performance of our algorithms.

Categories and Subject Descriptors

1.4.6 [Segmentation]: Pixel classification; [.4.8 [Scene Anal-

ysis]: Motion; 1.4.8 [Scene Analysis]: Object recognition

Keywords

Motion segmentation, object classification, curvature scale
space, structure tensor

1. INTRODUCTION

Video object segmentation is required by numerous ap-
plications ranging from high-level vision tasks to second-
generation video coding [25]. The MPEG-4 video coding
standard [10] provides functionality for object-based video
coding. Video information can be encoded in a number of
arbitrarily shaped video object planes.

Automatic content analysis and indexing methods can
benefit from object segmentation algorithms. For instance,
it is possible to summarize videos based on the occurrence
and activities of video objects [14].

Algorithms for high-level vision tasks such as shape-based
object recognition [26, 19, 2] depend on information with
regard to object outlines.

‘We propose an approach to segmenting video object based
on motion cues. Motion estimation is performed by esti-
mating local orientations in a spatio-temporal neighborhood
with the 3D structure tensor. Thus, information from a
number of consecutive frames is exploited. We present a new
hierarchical algorithm that embeds the tensor-based motion
estimation into a multiresolution framework to allow the cal-
culation of large displacements. The final segmentation is
performed by a geodesic active contour model, enabling the
simultaneous detection of multiple objects.

Furthermore, we provide a video object classification sys-
tem that categorizes the segmented video objects into sev-
eral object classes (e.g. cars, people). This classification
system matches curvature features of the object contour to
a database containing preprocessed views of prototypical ob-
jects.

The remainder of the paper is organized as follows: After
summarizing related work, Section 3 describes our segmen-
tation approach. Section 4 introduces the video object clas-
sification system. Section 5 presents experimental results.
Finally, Section 6 offers concluding remarks.

2. RELATED WORK

Various approaches have been proposed in the field of mo-
tion estimation and segmentation. A number of optical flow
techniques are reviewed in [3, 4, 18].

Mech and Wollborn [16] estimate a change detection mask
by employing a local thresholding relaxation technique. Re-
gions of uncovered background are removed from this mask
by using a displacement vector field.

In [13] an edge map is calculated from the inter-frame dif-
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Figure 1: From left to right: (a) Frame 10 from the taxi sequence, (b) optical flow with Lucas Kanade
algorithm (o =0, A2 > 5), (c) optical flow with 3D structure tensor.

ference image using the Canny edge detector [6]. The edge
map—containing edge pixels from both frames—is compared
to the edge map of the current frame and to a background
reference frame. The final segmentation is achieved by mor-
phological operators and an additional filling algorithm.

Meier and Ngan [17] propose two approaches. First, they
combine an optical flow field with a morphological operator.
Second, they employ a connected component analysis on the
observed inter-frame difference in conjunction with a filling
procedure.

Paragios and Deriche [21] propose a statistical framework
based on Gaussian and Laplacian law to detect the moving
object’s boundary in combination with boundaries obtained
from the current frame. They integrate the motion detection
and the tracking problems into a geodesic active contour
model.

In object classification, contour-based techniques have been
under study for a long time. Overviews can be found in [22,
15, 8].

One of the more promising contour analysis techniques
is the curvature scale space method (CSS) introduced by
Mokhtarian [20, 19] for still images. Here, the contour of an
already segmented object is compared to a database contain-
ing representations of preprocessed objects. The technique
does not depend on size or rotation angle and is robust to
noise. In [2] a modified CSS technique can be found. Re-
cently, Richter et al. [23] extended the CSS technique to
include the classification of video objects.

3. VIDEO OBJECT SEGMENTATION

In addition to the color and texture information already
available in still images, a video sequence provides tempo-
ral information. While it is hard to extract semantically
meaningful objects based on color and texture cues only,
motion cues facilitate the segregation of objects from the
background.

Consequently, the first step in our approach is to choose
an appropriate motion detector. Various methods have been
proposed to estimate motion [3, 4, 18]. However, most of
them determine motion parameters on the basis of only
two consecutive frames. Hence, these techniques are sen-
sitive to noise and require appropriate compensation meth-
ods. Figure 1 illustrates this observation for the classical
Lucas Kanade algorithm. We calculated the optical flow for
frame 10 of the taxi sequence with the Lucas Kanade im-
plementation used in [3]. The parameters were set to o =0

and A2 > 5 (see [3] for details), motion vectors shorter than
0.2 pixel/frame are suppressed in the figure. The taxi se-
quence contains four moving objects: the taxi in the mid-
dle, a car on the left, a van on the right and a pedestrian
in the upper left corner. While the motion for the three
main objects is calculated reliably, several misclassifications
occur due to noise in the background. Note that the result
can be improved significantly by preprocessing the sequence
with a 3D Gaussian smoothing filter. However, a drawback
to pre-smoothing is the elimination of small structures, e.g.
the pedestrian in the upper left corner of the taxi sequence
cannot be detected.

In our approach, we employ the 3D structure tensor to
analyze motion [5]. Here, motion vectors are calculated by
estimating local orientations in the spatio-temporal domain.
Figure 1(c) depicts the result for the structure tensor. Here,
background noise is eliminated without pre-filtering and re-
liable motion detection is possible. Even small structures
like the pedestrian are identified.

In the following section we describe the structure tensor
technique. Then we present a new algorithm that embeds
the approach into a multiresoultion framework to allow the
detection of large velocities.

3.1 Tensor-based Motion Estimation

Within consecutive frames stacked on top of each other,
a video sequence can be represented as a three-dimensional
volume with one temporal (z) and two spatial (z,y) coor-
dinates. From this perspective, motion can be estimated
by analyzing orientations of local gray value structures [5].
Assuming that illumination does not vary, gray values re-
main constant in the direction of motion. Thus, stationary
parts of a scene result in lines of equal gray values in parallel
to the time axis. Moving objects, however, cause iso-gray-
value lines of different orientations. Figure 2 illustrates this
observation.

Consequently, moving and static parts on the image plane
can be determined from the direction of minimal gray value
change in the spatio-temporal volume. This direction can be
calculated as the direction n being as much perpendicular
to all gray value gradients in a 3D local neighborhood €.
Thus, for each pixel at position (z,y, z) we minimize

/ (VaI(2',y', 2 )n)de’ dy' dz' (1)
J(z!y' 2" ) EQ(a,y,2)

where V3 := (9,,0y,0.) denotes the spatio-temporal gradi-



Figure 2: Local orientation of image structures.
Left: Frame 169 (top) and frame 39 (bottom) of
the “hall and monitor” sequence. Right: Slice of
the corresponding spatio-temporal volume taken at
the horizontal line marked by the white lines in the
single frames.

ent, I the three-dimensional volume and Q a 3D neighbor-
hood around the pixel at position (z,y, 2).

As described in [5, 9], minimizing Equation 1 is equivalent
to determining the eigenvector to the minimum eigenvalue
of the 3D structure tensor

Jzz Jzy Jzz
= Joy Jyy Jy: (2)
[ Jzz Jyz Jzz J

where Jypq,p,q € {z,y, 2z} are calculated within a local neigh-
borhood €2 from

Tpa(,y,2) = / 0, 1(zy )OI (g 2 ) dy' d=. (3)
JQ

By analyzing the three eigenvalues Ay > X2 > A3 > 0
of the 3 x 3 symmetric matrix, we can classify the local
neighborhood’s motion. In general, an eigenvalue A; > 0
indicates that the gray values change in the direction of the
corresponding eigenvector e;. Figure 3 illustrates the re-
lationship between local structures, eigenvalues, and eigen-
vectors in the two-dimensional case. Consider, for instance,
case 1, where the local neighborhood €2 is centered over a
horizontal structure. The gray values within this neighbor-
hood change in one direction. Consequently, A1 > 0,A> =0
and the eigenvector e; gives the direction of the gray value
change.

Within the context of a three-dimensional neighborhood
the following observations can be made. All three eigen-
values equal to zero indicate an area of constant gray val-
ues, therefore no motion can be detected. If \; > 0 and
A2 = A3 = 0, gray values change only in one direction. This
corresponds to a horizontal (or vertical) structure moving
with constant velocity. Consequently, due to the correspon-
dence problem we can only calculate normal velocity.

Real motion can be calculated if gray values remain con-
stant in only one direction, hence, A1 > 0,A2 > 0 and
A3 = 0. This occurs when a structure containing gray value
changes in two directions moves at constant speed.

Finally, if all three eigenvalues are greater than zero, we

Figure 3: Local structures, eigenvalues, and eigen-
vectors in two dimensions. Case 1 (case 3): hor-
izontal (vertical) structure, gray values change in
one direction, i.e., A1 > 0, \» = 0; case 2: corner,
gray values change in more than one direction, i.e.,
A1 =2X2>0.

cannot determine the optical flow due to noise.

In real-world video sequences, however, it is impractical
to compare the eigenvalues to zero, since due to noise in
the sequence small gray value changes always occur. Thus,
we introduce normalized coherence measures ¢; and cs that
quantify the certainty of the calculations. The coherence
measure ¢; indicates whether a reliable motion calculation
is possible and is defined by

0 Al = s, “
Ct = -C
exp (m) else

where C' > 0 denotes a contrast parameter. Areas with
(IA¢1 —A3]) € C are regarded as almost constant local neigh-
borhoods [27]. A value of ¢; near 1.0 indicates that A1 > A,
therefore, a reliable motion calculation can be performed.
The opposite is true if the ¢; value approaches zero.

The coherence measure c;,

0 Ao = As, .
cs = _ , 5
exp (ﬁ) else

provides information whether normal or real motion can be
determined. Values near 1.0 allow the calculation of real
motion. Otherwise only normal velocities can be specified.

As depicted in Figure 1(c), the structure tensor allows re-
liable motion calculations and suppresses background noise
due to the integration of several consecutive frames. The
number of frames used in the motion calculation is deter-
mined by the size of the neighborhood Q. Setting || = 77,
for instance, means that the motion calculation for each
pixel is performed within a spatio-temporal area of 7x 7 x 7
pixels.

3.2 Multiscale Motion Estimation

The motion detection approach described so far exhibits
problems with sequences containing large velocities. This
results from the fixed size of the local neighborhood €2. Con-
sider an image feature that moves at high velocity. Conse-
quently, it changes its position by a large displacement from
one frame to the next. If the displacement exceeds the size
of the local neighborhood, the motion of the feature cannot
be detected.

To overcome this limitation we developed a new hierar-
chical algorithm that embeds the structure tensor technique
in a linear scale-space framework. Hence, the calculations



are performed in a coarse-to-fine manner.

First, a Gaussian pyramid of L levels is constructed from
the video sequence. Let I'(z,y,z) denote the original se-
quence of size (n;j,n;, n.). Then, the coarser levels are con-
structed recursively, i.e., for | = 2,3,...L, I' is calculated
from I'"' by spatial smoothing and spatial downsampling
by a factor of two.

Then, for each position p' = (z',y",2) € [0,n2] x [0, 7] x
[0, n.] the optical flow vector is calculated. The calculations
start at the coarsest level L. The position p” within this
level is determined as (2%, y*, 2) = (z'/2%,y' /2%, 2). Then,
within a local neighborhood € centered at the position p”
the structure tensor J is calculated and the corresponding
eigenvalues are evaluated as described in Section 3.1. If mo-
tion calculation is feasible, a motion vector v = (1)5, 1);‘) is
determined at this position. Note that due to the subsam-
pling procedure large displacements are reduced appropri-
ately and therefore can be captured within the local neigh-
borhood.

The motion vector v” determined at the coarsest pyramid
level L serves now as an initial guess g¥ ! at the next pyra-
mid level L — 1. Since the spatial dimensions double from
one level to the next, we adapt the initial guess accordingly,
ie., gt ' = (2@5,21}5). Thus, at this state we know that
at position p© ! = (z'/2571 ¢ /257! 2) an image feature
moves roughly according to g™~ ".

The goal at level L — 1 is now to refine the initial guess.
This is done by (1) compensating for the motion vector
g™~ ! within the local neighborhood around p™~' and (2)
by calculating a displacement vector d“~! on the modified
neighborhood. Hence, the motion vector at this level, ™!,
emerges from a combination of initial guess and displace-
ment, v¥ 7! = gt 4 gkt

The motion vector v" ! is used as initial guess for the
consecutive pyramid level and the algorithm repeats until
the highest resolution is reached.

A crucial part of the algorithm is the motion compensa-
tion that must be performed on each level in order to allow
the displacement calculation. Remember the calculations of
the structure tensor elements, e.g. the element J,,:

Joa(2,y,2) = Zazl(r',y', 20 1(z',y', 2 )da' dy' dz'.
Q
(6)

Here, spatial derivations are calculated within a spatio-
temporal neighborhood around the position (z,y,2). If we
consider |Q'| = 3 x 3 x 3, patches from three frames of the
video sequence, namely, z—1, z, z+1, are involved in the cal-
culations. Consider now, that an initial guess g = (g, gy)
for this local neighborhood is available from the previous
pyramid level. Thus, to determine the additional displace-
ment d, it is first necessary to compensate for this guess.

Consequently, Equation 6 changes to

Jox(T,y,2) = Do Oul(z' + g2(2 —2),y +9y(z' —2).2")
0uI(z' + g (2 — 2),4 + gy (2 — 2),2')

dz' dy' d2’,
(M
i.e., from frame z + 1 a 3 x 3 patch around position (z +
gz, Y+ gy), from frame z — 1 a patch around (z — g,y — gy ),
and from frame z a patch around (z,y) is used. Obviously,
g» and g, need not be integer values. Thus, bilinear inter-

polation is used to determine image values at the subpixel
level. Accordingly, the other elements of the tensor J are
calculated under motion compensation.

The need for motion compensation and the use of bilinear
interpolation techniques in the hierarchical algorithm clearly
affect the performance of the whole method. In order to
improve the efficiency it is useful to eliminate those positions
in [0,73] x [0,n,] x [0,n.] in advance where presumably a
reliable motion calculation is not possible.

Again, the structure tensor, used here in the spatial do-

main,
! U
3 = [ Tow Ty } : ()

is a reliable indicator for this task. Remember that in the
two-dimensional case (see Figure 3) the eigenvalues A1 and
A2 provide information about the texturedness of the lo-
cal neighborhood. Both eigenvalues larger zero indicate a
textured region. With respect to motion estimation it is
probable that this region can be identified in the consec-
utive frame, too. Consequently, a full motion vector can
be calculated. If only one eigenvalue is greater than zero,
the area in question contains a horizontal or vertical struc-
ture. Therefore only motion in the direction of the gradient
(normal motion) can be determined. On the other hand,
a uniform region, i.e., no estimation of motion is possible,
results in A1 = A2 = 0.

Thus, Shi and Tomasi [24] propose the following reliability
measure:

min(A, A2) > T, 9)

i.e., a position (z,y) in the image contains a good feature to
track, if the lesser eigenvalue exceeds a predefined threshold
T.

However, our purpose is slightly different because we want
to calculate any kind of motion occurring in the video se-
quence. Therefore, we modify the reliability measure (Equa-
tion 9) to exclude only uniform regions from the motion
calculation:

0 A1 = Ay, 10)
r= _c 10
exp (m) else.

A small sum of A\; and A» result in values near zero, while
in all other cases the reliability measure adopts values near
one.

3.3 Motion-based Segmentation

As depicted in Figure 1(c), the motion estimation ap-
proach is able to reliably identify regions of interest, though
some parts of the van are left out due to low contrast. How-
ever, tensor-based motion detection only is not sufficient to
provide an accurate segmentation of the objects in question.

We observe two shortcomings that are inherent to this
approach. First, due to areas of constant gray values within
the moving objects we do not receive dense motion vector
fields. In these areas all three eigenvalues are close to zero
and therefore motion cannot be calculated. However, it is
likely that motion can be estimated at the spatial edges of
the moving objects.

Second, the tensor fails to provide the true object bound-
aries accurately since the calculations within the neighbor-
hood © blur motion information across spatial edges.

Consequently, we need (1) a grouping step that will in-
tegrate neighboring regions into objects while closing gaps



Figure 4: Tensor-driven geodesic active contour. From left to right: contour after 3000, 6000, 9000, 12000,

15000, 17392 iterations. Constant force ¢ = 0.02.

and holes and (2) contour refinement based on spatial edge
information.

Widely used within this context are active contour mod-
els. Basically, a planar parametric curve C(s) placed around
image parts of interest evolves under smoothness control (in-
ternal energy) and the influence of an image force (external
energy).

In the classical explicit snake model [11] the following
functional is minimized

_7£( ) (alC' ()" + BIC" ()I” = AIVI(C(s))]*) ds  (11)

where the first two terms control the smoothness of the pla-
nar curve, while the third attracts the contour to high gra-
dients of the image.

To obtain a topological flexibility that will allow the simul-
taneous detection of multiple objects, we employ geodesic
active contours [12, 7]. The basic idea is to embed the ini-
tial curve as a zero level set into a function u : IR? — IR, i. e.,
C is represented by the set of points x; with u(x;) =0, and
to evolve this function under a partial differential equation.

Using a modified energy term this results in the image
evolution equation [12, 7]

Ju
ot
where x denotes the curvature of a level set, V := (09,,0y)
is the spatial gradient, ¢ adds a constant force for faster
convergence, and g represents the external image-dependent
force or stopping function.
By defining an appropriate stopping function g, we can
integrate the tensor-based motion detection into the model.
Choosing g(I) = 3(I), where § is a smoothed version of

=g(I)(c+ k)|Vu| + Vu- Vg (12)

1 |v(x,y, 2z Ty,
e ={p LorsE 0

stops the curve evolution (g = 0) when positions are reached
that coincide with “motion pixels”. Note that v = (vg,vy)
denotes the 2D velocity available from the motion estimation
step. T, is a predefined velocity threshold compared against
the norm of the motion vector. Hence, our segmentation
scheme assumes in the current state a static camera.

In the event of a moving camera, a global camera motion
estimation has to be performed first. It should then be pos-
sible to compare the motion vectors determined from the
structure tensor to the vectors resulting from the the global
camera parameters [17].

Figure 4 depicts the evolution of the tensor-driven geo-
desic active contour. The contour succeeds in splitting up
and detecting the four different moving objects.

In order to improve the segmentation results, we employ a
refinement procedure based not on motion information but

Figure 5: Contour refinement. Left: motion-based
segmentation, right: motion-based segmentation
with contour refinement (445 iterations, C = 1.5).

on the gradient values within a single frame. As can be seen
in Figure 5 (left), the motion-based segmentation detects
regions that are slightly larger than the moving objects.

Thus, we restart the image evolution process using the
result from the motion-based segmentation as the zero level
set. However, this time a stopping function § based on the
spatial gradient is used:

1

9(I) = T ViEee (14)

Here, C is a contrast parameter that diminishes the in-

fluence of low gradient values. Figure 5 depicts the perfor-
mance of the refinement procedure.

4. VIDEO OBJECT CLASSIFICATION

Our system for object classification consists of two major
parts, a database containing contour-based representations
of prototypical video objects, and an algorithm to match
extracted objects with the database. In the following we
summarize the classification approach, for details see [23].

4.1 Curvature Scale Space Representation

The curvature scale space (CSS) technique [1, 20, 23] is
based on the idea of curve evolution, i.e., basically the de-
formation of a curve over time. A CSS image provides a
multi-scale representation of the curvature zero crossings of
a closed planar contour.

Consider a closed planar curve I'(u),

I'(u) = {(z(u), y(u))|u € [0,1]},

with the normalized arc length parameter u. The curve
is smoothed by a one-dimensional Gaussian kernel g(u,o)
of width o. The deformation of the closed planar curve is
represented by

I(u,0) = {(X(u, 0),Y (u, 0))|u € [0,1]},

where X (u,0) and Y (u, o) denote the components z(u) and
y(u) after convolution with g(u, o).
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are length

Figure 6: Construction of the CSS image. Left: (a)-
(f) Object view and smoothed contour after 10, 30,
100, 200 and 300 iterations. The small dots on the
contour mark the curvature zero crossings. Right:
Resulting CSS image.

The curvature k(u,o) of an evolved curve can be com-
puted using the derivatives X, (u, ), Xyu(u,0), Y (u,a),
and Yy (u, 0):

X (’U/, U) - Youu ('U/, U) — Xuu (’LL, U) -Y, (’LL, U)
(X“r(ue 0)2 + K,,(u, 0)2)3/2

A CSS image I(u,0) is defined by
I(u, 0) = {(u, 0)|K(u, o) = 0}.

k(u,0) =

It shows the zero crossings with respect to their position
on the contour and the width of the Gaussian kernel (or the
number of iterations, see Figure 6). During the deformation
process, zero crossings merge as transitions between contour
segments of different curvature are equalized. Consequently,
after a certain number of iterations, inflection points cease to
exist and the shape of the closed curve is convex. Note that
due to the dependence on curvature zero crossings, convex
object views cannot be distinguished by the CSS technique.

Significant contour properties that are visible for a large
number of iterations result in high peaks in the CSS image.
However, areas with rapidly changing curvatures caused by
noise produce only small local maxima.

In many cases the peaks in the CSS image provide a robust
and compact representation of an object view’s contour[19,
20]. Note that a rotation of an object view on the image
plane can be accomplished by shifting the CSS image left
or right in a horizontal direction. Furthermore, a mirrored
object view can be represented by mirroring the CSS image.

A main drawback to the basic CSS technique—where only
the two values (position, height) represent a peak in an CSS
image—is the occurrence of ambiguities. Certain contours
differing significantly in their visual appearance nevertheless
have similar images. This is due to the fact that shallow
and deep concavities on a contour may result in peaks of
the same height in the CSS image.

Abbasi [2] presents several approaches to avoiding these
ambiguities, raising the computational costs significantly.

In our extension [23] we extract the width at the bottom
of the arc-shaped contour corresponding to the peak. The
width specifies the normalized arc length distance of the two
curvature zero crossings enframing the contour segment rep-
resented by the peak in the CSS image. For each peak in
the CSS image three values have to be stored: the position
of the maximum, its value (iteration or width of the Gaus-
sian kernel), and the width at the bottom of the arc-shaped
contour. It is sufficient to extract the significant maxima
(above a certain noise level) from the CSS image. For in-
stance, in the example depicted in Figure 6, and assuming
a noise level of 30 iterations, only four data triples have to
be stored.

The matching algorithm described in the following sec-
tion utilizes the information in the peaks to compare auto-
matically segmented video objects with prototypical video
objects in the database.

4.2 Object Matching

The objects are matched in two steps. In the first, each
automatically segmented object in a sequence is compared
to all objects in the database. A list of the best matches
is built for further processing. In the second step, the re-
sults are accumulated and a confidence value is calculated.
Based on it, the object class of the object in the sequence is
determined.

In order to find the most similar object in the database
compared to a query object from a sequence, a matching
algorithm is needed. The general idea is to compare the
peaks in the CSS images of the two objects, based on the
characterization by the triples (height, position, width).

e In a first step, the best position to compare the two
images has to be determined. It might be necessary to
rotate or mirror one of the images so that the peaks are
aligned best. As mentioned before, shifting the CSS
image corresponds to rotation of the original object.
One of the CSS images is shifted so that the highest
peaks in both CSS images are aligned.

e A matching peak is determined for each peak in the
first object. Two peaks may match, if their position
and width are within a certain range. Only for the
highest peaks, does the height also need to be within
a certain range.

e If a matching peak is found, the Euclidean distance
of the height and position of the peaks is calculated
and added to the difference between the images. If
no matching peak can be determined, the height of
the peak in the first query object is multiplied by a
penalty factor and added to the total difference.

The matching algorithm might return oo, e.g. if no ade-
quate rotation could be found or if the highest maxima in
the CSS images do not match within a given tolerance range.
If this is the case, the two objects are significantly different.

All top matches which were recognized are used for accu-
mulation. The object class with a percentage above 75 % is
considered to be the class of the sequence.

5. EXPERIMENTAL RESULTS

We subdivide the experimental results achieved with our
algorithms into three sections. First, we demonstrate the



Figure 7: Left: frame from the synthetic sequence,
right: motion field calculated by the hierarchical
structure tensor approach (for better visibility the
flow image is subsampled by a factor of 4).

performance of the multiscale structure tensor approach on
a synthetic sequence containing large displacements. Sec-
ond, we provide segmentation results obtained by the tensor-
driven geodesic active contour with respect to two real-world
sequences. Finally, results calculated by the object classifi-
cation algorithm are presented.

5.1 Multiscale Motion Estimation Results

To measure the performance of the hierarchical approach
described in Section 3.2, we created a simple synthetic video
sequence for which the displacements from one frame to the
next are known. Figure 7 (left) shows a frame in this se-
quence that contains two moving squares. While the upper
square (square 1) moves at a constant velocity of 10 pixels
per frame from the right to the left, the other square (square
2) moves diagonally upwards at velocity of (82 + 8%)1/2.

Figure 7 (right) depicts the result obtained by our mul-
tiresolution algorithm using 4 pyramid levels. A closer look
at the motion vectors calculated by the algorithm reveals
the following observations:

1. At the corners of the squares the velocity could be
estimated exactly (square 1: v = (—10,0), square 2:
v = (8, —8). Remember that at a corner moving with
constant speed enough texture is available to allow the
calculation of the full image motion.

2. On account of the pyramidal structure the velocities
at horizontal and vertical structures approximate the
real image motion. In general, full motion calculation
is possible for points near the corners. At the coarsest
pyramid level each point on a horizontal or vertical
structure is near the corner (in our specific example).
Therefore, an initial full motion guess for these points
can be calculated. However, for consecutive pyramid
levels full motion calculation is no longer possible since
the distance to the corners increases. Consequently,
the displacements added to the initial guess refine the
motion estimation only in the normal direction.

3. For pixels in the interior of the squares it is not possible
to calculate image motion. The reliability measure
described in Equation 10 eliminates these points from
the calculations.

The results for the synthetic sequence indicate that—
under specific circumstances—the proposed approach is able
to estimate motion exactly even given the existence of large
displacements.

Object | Frame Fp Fy (1;:) (FWJOV)
car 7 156 61 9.12 3.73
car 8 137 40 8.07 2.62
car 9 208 18 12.00 1.19
car 10 149 10 8.60 0.67
car 11 197 40 11.35 2.53
taxi 7 226 7 14.51 0.56
taxi 8 217 14 14.76 1.14
taxi 9 233 13 15.70 1.05
taxi 10 250 20 17.02 1.67
taxi 11 196 15 13.98 1.23
van 7 135 448 10.77 28.61
van 8 176 663 15.04 40.01
van 9 288 522 22.15 34.03
van 10 198 727 16.94 42.82
van 11 246 800 19.54 44.13

Table 1: Region-based distance for the taxi se-
quence. Columns 3, 4: false positives, false nega-
tives. Columns 5, 6: percentage of mismatched pix-
els in comparison to the entire number of pixels of
the manual segmentation.

. avg. |d=0|d=1|d=2|d>2
Object | Frame d (%) (%) (%) (%)

car 71127 | 3812 | 35.15 | 14.36 | 12.38
car 8| 1.41 | 27.27 | 35.23 | 18.18 | 19.32
car 9| 154 | 33.82 | 29.90 8.82 | 27.45
car 10 | 1.32 | 35.88 | 32.35 | 12.35 | 19.41
car 11 | 1.39 | 34.98 | 29.06 | 13.30 | 22.66
taxi 7142 | 47.17 | 23.90 9.43 | 19.50
taxi 8 | 1.31 | 53.97 | 26.98 3.70 | 15.34
taxi 9| 144 | 44.21 | 28.95 6.84 | 20.00
taxi 10 | 1.52 | 48.09 | 24.04 4.92 | 22.95
taxi 11 | 1.23 | 54.89 | 22.28 7.07 | 15.76
van 714.21 | 20.59 | 18.24 | 10.00 | 51.18
van 8620 | 11.36 | 17.05 | 11.36 | 60.23
van 9605 | 11.18 | 11.18 7.65 | 70.00
van 10 | 6.82 | 11.54 6.59 7.69 | 74.18
van 11 | 7.43 9.95 9.42 7.85 | T2.77

Table 2: Edge-based distance for the taxi sequence.
Column 3: average edge pixel distance. Colums 4-7:
percentages of the distances 0,1,2,3..n.

5.2 Segmentation Results

‘We applied the segmentation algorithm described above to
two real-world sequences. The first one is the Hamburg taxi
sequence widely used within the computer vision commu-
nity. Figure 8 illustrates the performance of our segmenta-
tion approach on this sequence. We employed the standard
structure tensor described in Section 3.1. The parameters
were set as follows: (1) The size of the local neighborhood
Q was set to 7 x 7 x 7. (2) The contrast parameter for the
coherence measures was set to 5. For all positions with a



coherence ¢; > (.75 we performed motion estimation, po-
sitions with ¢; below this value were rejected. Full motion
vectors were calculated for positions with ¢s > 0.9.

The motion estimates were integrated as an external force
into the geodesic active contour model (see Section 3.3). For
faster convergence we set the external force ¢ = 0.02. Note
that a value for ¢ greater than zero forces the curve to shrink,
while a value smaller zero causes an expansion. Finally, we
employed the contour refinement step described in Section
3.3.

In addition to the visual results we provide quantitative
measures in Tables 1 and 2. First, we used the region-based
distance measures Fp and Fy to compare the automatic seg-
mentation results to those of a manual segmentation. While
Fp contains the number of pixels incorrectly marked as ob-
ject pixels by the automatic segmentation (false positives),
Fy sums up object pixels missed by the process (false neg-
atives). Second, we employed an edge-based distance mea-
sure. For each contour pixel in the manual segmentation
the distance to the closest contour pixel in the automatic
segmentation was determined.

The following conclusions can be drawn from the mea-
sures: The segmentations of the car and the taxi are accept-
able. While the number of pixels detected by the automatic
segmentation is rather high, the miss rate is fairly low. Fur-
thermore, the edge-based measure indicates that edges of the
automatic and the manual segmentation coincide. However,
the van could not be segmented accurately. Both region-
based and edge-based distance measures return high error
rates.

The second video sequence is a typical “head and shoul-
der” sequence. However, due to the low sampling rate the
displacements of the moving person are large. Hence, we
employed the multiresolution motion estimation with four
pyramid levels and a local neighborhood of size 3 x 3 x 3.
To speed up the motion detection we employed the reliabil-
ity measure provided in Section 3.2, i.e., positions with a
reliability below 0.9 were rejected. The final segmentation
was performed by the geodesic active contour model.

Figure 9 depicts the results of the motion estimation and
segmentation for the second sequence. Our segmentation
approach identifies the region of interest correctly. How-
ever, the accuracy is less than that for the taxi sequence.
Especially, in areas containing strong but static edges, re-
sults from the hierarchical motion estimation blur across the
moving edges, thus enlarging the segmented region. Tables
3 and 4 underline these observations. Especially the per-
centages of exactly matching edges (d = 0) are rather small.

5.3 Classification Results

Our test database [23] consists of five object classes con-
taining animals, birds, cars, people, and miscellaneous o0b-
jects. For each object class we collected 25 102 images from
a clip art library. The clip arts are typical representatives of
their object class with easily recognizable perspectives. The
object class people contains the most objects (102 images).
The contours of humans differ greatly in image sequences,
e. g. the position of the arms and legs makes a great impact
on the contour.

We applied the extended object matching algorithm on
the automatically segmented cars in the Hamburg taxi se-
quence (see Figure 8) and in the person sequence (see Fig-
ure 9). The CSS matching was performed with the triples

Frame Fp Fy (1;;) (I;JEV)
% 759 121 13.22 537 |
34 336 77 6.55 1.58
35 601 106 11.72 2.29
38 566 109 12.97 2.62

Table 3: Region-based distance for the person se-
quence. Columns 2, 3: false positives, false nega-
tives. Columns 4, 5: percentage of mismatched pix-
els in comparison to the entire number of pixels of
the manual segmentation.

Frame | V8 distance | d=0|d=1|d=2|d>2
d (%) | (%) | (%) | (%)

25 197 | 21.23 | 31.36 | 24.20 | 23.21

34 1.20 | 25.40 | 41.98 | 23.53 9.10

35 217 | 12.81 | 38.15 | 26.16 | 22.89

38 2.04 | 12.61 | 38.71 | 24.93 | 23.75

Table 4: Edge-based distance for the person se-
quence. Column 2: average edge pixel distance.
Colums 3-6: percentages of the distances 0,1,2,3..n.

Taxi Good Bad | Rejected

sequence matches matches frames

car (left) Cars 92% 0% 8%

taxi (center) | Cars 68% Misc 8% 24%

van (right) Cars 29% | Animals 39% 0%
People 32%

Table 5: Results of the automatically segmented ob-
jects in the Taxi sequence matched to the objects in
the database.

(position, height, width) for each peak in the CSS image.

Table 5 shows the result of the Hamburg taxi sequence.
The perspective and segmentation of the car (left object) is
best suited for recognition. At only 68% the taxi (center
object) cannot be recognized reliably. The van cannot be
recognized by the application.

The last row in Figure 8 shows the four best matches of
the car (left object) in frame 12. The perspective of the
car does not change, so the other frames show similar re-
sults. Figure 9 depicts classification results for the person
sequence. The best matches for the frames 25, 33, 34, and
38 are displayed in the last row.

6. CONCLUSIONS

We presented an approach to the segmentation and clas-
sification of video objects. In the motion segmentation step
we integrated the 3D structure tensor into a geodesic active
contour model. While the structure tensor is able to esti-
mate motion reliably in the presence of background noise,
the active contour groups neighboring regions and closes
holes and gaps. The level set-based implementation allows
the simultaneous detection of multiple objects. To account
for large displacements that cannot be handled by the stan-
dard structure tensor, we developed a new multiresolution
tensor-based algorithm.

A contour-based video object classification system was
presented as an application. The robustness of the curvature



scale space method allows correct classification even in the
presence of segmentation errors. We provided various ex-
perimental results. While the results for the segmentation
algorithm driven by the standard tensor are very encour-
aging, the segmentation obtained in conjunction with the
multiresolution algorithm are less accurate. Nevertheless,
the classification algorithm was able to calculate reasonable
categorizations.

There are, however, several areas that require further de-
velopment. First, the segmentation performance of the mul-
tiresolution approach has to be improved. Second, to pro-
vide a complete segmentation module, it is necessary to in-
tegrate a tracking component.
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Figure 8: Segmentation and classification of the taxi sequence. Rows from top to bottom: (a) frames 4, 8, 12,
15, (b) motion estimation with structure tensor, (c) tensor-driven active contour with contour refinement,
(d) classification of the car on the left in frame 12, the four top matches are displayed.

Figure 9: Segmentation and classification of the person sequence. Rows from top to bottom: (a) frames 25,
33, 34, 38, (b) motion estimation with hierarchical structure tensor, (c) tensor-driven active contour, (d)
classification of the frames 25, 33, 34, 38, the top match is displayed.



